📄 d5r7.frm
字号:
VERSION 5.00
Begin VB.Form Form1
Caption = "Form1"
ClientHeight = 4650
ClientLeft = 60
ClientTop = 345
ClientWidth = 4680
LinkTopic = "Form1"
ScaleHeight = 4650
ScaleWidth = 4680
StartUpPosition = 3 'Windows Default
Begin VB.CommandButton Command1
Caption = "Command1"
Height = 375
Left = 3240
TabIndex = 0
Top = 3960
Width = 1095
End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Private Sub Command1_Click()
'PROGRAM D5R7
'Driver for routine CHDER
NVAL = 40
PIO2 = 1.5707963
Dim C(40), CDER(40)
A = -PIO2
B = PIO2
Call CHEBFT(A, B, C(), NVAL)
'Test derivative
Print
Print Tab(5); "How many terms in Chebyshev evaluation?"
'Input MVAL , between 6 and 40, MVAL=0 TO END
MVAL = 20
Print Tab(5); MVAL
If (MVAL <= 0) Or (MVAL > NVAL) Then Exit Sub
Call CHDER(A, B, C(), CDER(), MVAL)
Print Tab(5); " X Actual Cheby. Deriv."
For I = -8 To 8 Step 1
X = I * PIO2 / 10#
Print Tab(5); Format$(X, "#0.000000");
Print Tab(19); Format$(FDER(X), "#0.000000");
AAA = CHEBEV(A, B, CDER(), MVAL, X)
Print Tab(34); Format$(AAA, "#0.000000")
Next I
End Sub
Function FUNC(X)
FUNC = (X ^ 2) * (X ^ 2 - 2#) * Sin(X)
End Function
Function FDER(X)
'Derivative of FUNC
AAA = 4# * X * ((X ^ 2) - 1#) * Sin(X)
FDER = AAA + (X ^ 2) * (X ^ 2 - 2#) * Cos(X)
End Function
Sub CHDER(A, B, C(), CDER(), N)
CDER(N) = 0#
CDER(N - 1) = 2 * (N - 1) * C(N)
If N >= 3 Then
For J = N - 2 To 1 Step -1
CDER(J) = CDER(J + 2) + 2 * J * C(J + 1)
Next J
End If
CON = 2# / (B - A)
For J = 1 To N
CDER(J) = CDER(J) * CON
Next J
End Sub
Function CHEBEV(A, B, C(), M, X)
If (X - A) * (X - B) > 0# Then Print "X not in range."
D = 0#
DD = 0#
Y = (2# * X - A - B) / (B - A)
Y2 = 2# * Y
For J = M To 2 Step -1
SV = D
D = Y2 * D - DD + C(J)
DD = SV
Next J
CHEBEV = Y * D - DD + 0.5 * C(1)
End Function
Sub CHEBFT(A, B, C(), N)
NMAX = 50
Dim F(50)
PI = 3.14159265358979
BMA = 0.5 * (B - A)
BPA = 0.5 * (B + A)
For K = 1 To N
Y = Cos(PI * (K - 0.5) / N)
F(K) = FUNC(Y * BMA + BPA)
Next K
FAC = 2# / N
For J = 1 To N
Sum = 0#
For K = 1 To N
Sum = Sum + F(K) * Cos((PI * (J - 1)) * ((K - 0.5) / N))
Next K
C(J) = FAC * Sum
Next J
End Sub
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -