⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 erdosrenyi.m

📁 ER随机图算法
💻 M
字号:
function [G]=erdosRenyi(nv,p,Kreg)
%Funciton [G]=edosRenyi(nv,p,Kreg) generates a random graph based on
%the Erdos and Renyi algoritm where all possible pairs of 'nv' nodes are
%connected with probability 'p'. 
%
% Inputs:
%   nv - number of nodes 
%   p  - rewiring probability
%   Kreg - initial node degree of for regular graph (use 1 or even numbers)
%
% Output:
%   G is a structure inplemented as data structure in this as well as other
%   graph theory algorithms.
%   G.Adj   - is the adjacency matrix (1 for connected nodes, 0 otherwise).
%   G.x and G.y -   are row vectors of size nv wiht the (x,y) coordinates of
%                   each node of G.
%   G.nv    - number of vertices in G
%   G.ne    - number of edges in G
%
%Created by Pablo Blinder. blinderp@bgu.ac.il
%
%Last update 25/01/2005

%build regular lattice 
A=sparse(nv,nv);
Kreg=fix(abs(Kreg)/2);Kreg=(Kreg<1)+Kreg;

for k=1:Kreg
    A=sparse(A+diag(ones(1,length(diag(A,k))),k)+diag(ones(1,length(diag(A,nv-k))),nv-k));
end
ne0=nnz(A);
%find connected pairs
[v1,v2]=find(A);
% P=permPairs(nv);%my version is faster
Dis=(rand(length(v1),1)<=p);%pairs to disconnect
A(v1(Dis),v2(Dis))=0;
vDis=unique([v1(Dis),v2(Dis)]);%disconnected vertices
nDis=ne0-nnz(A);sum(Dis);

%cycle trough disconnected pairs
disconPairs=[v1(Dis),v2(Dis)];
for n=1:nDis
    %choose one of the vertices from the disconnected pair
    i=ceil(rand*size(disconPairs,1));
    j=logical(1+rand>0.5);
    vDisToRec=disconPairs(i,j);
    %find non adjacent vertices and reconnect
    adj=[find(A(:,vDisToRec)) ; find(A(vDisToRec,:))'];
    nonAdj=setdiff(1:nv,adj);
    vToRec=nonAdj(ceil(rand*length(nonAdj)));
    S=sort([vDisToRec vToRec]);
    A(S(1),S(2))=1;
end
[x,y]=getNodeCoordinates(nv);
%make adjacency matrix symetric
A=A+fliplr((flipud(triu(A))));
G=struct('Adj',A,'x',x','y',y','nv',nv,'ne',nnz(A));


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -