⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 usfkad6_05.cpp

📁 Solutions are obtained for Poissson, diffusion, or wave PDEs homogeneous or nonhomogeneous equations
💻 CPP
📖 第 1 页 / 共 5 页
字号:
if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="\\frac{x}{\\alpha_{x=X}X+1}f_{x=X}";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1 = "\\eta_" + u + " (" + u + " ; " + K + ")";ans2 = " \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + u + "& \\mbox{ if } " + K + "= 0;\\\\ \\sin " + K + " " + u + " &\\mbox{ otherwise } . \\end{array} \\right.  ";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{\\alpha_" + U + " " + U +" +1} & \\mbox{ if } " + K + " = 0;\\\\ \\frac{1}{\\alpha_" + U + "\\sin " + K + " "+ U + " + " + K + " \\cos " + K + " " + U + "} & \\mbox{ otherwise } . \\end{array} \\right.  ";symb1 = "";symb2 = "";}sulmarker = 1;}//23 if (f=="CCDRNH") { ans1 = "\\eta_" + u + " (" + u + " ; " + K + ")";ans2 = " \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}1 + \\alpha_" + U + " (" + U + " - " + u + ") \\mbox{  if } " + K + " = 0; \\mbox{ otherwise} &\\mbox{}\\\\" + K + " \\cosh " + K + "("+U+"-" + u + ") + \\alpha_{"+U+"} \\sinh " + K + "("+U+"-" + u + ")  &\\mbox{} \\end{array}\\right.  ";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{1 +\\alpha_" + U + "" + U+ "} & \\mbox{ if } " + K + " = 0;\\\\ \\frac{1}{" + K + " \\cosh" + K + " " + U + "+ \\alpha_" + U + " \\sinh " + K + " " + U + " } & \\mbox{ otherwise} . \\end{array}\\right.   ";symb1 = "";symb2 = "";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="\\left(1-\\frac{\\alpha_{x=X}x}{\\alpha_{x=X}X+1}\\right)f_{x=0}";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1 = "\\eta_" + u + " (" + u + " ; " + K + ")";ans2 = " \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}1 + \\alpha_" + U + " (" + U + " - " + u + ") \\mbox{  if } " + K + " = 0; \\mbox{ otherwise} &\\mbox{}\\\\" + K + " \\cos " + K + "("+U+"-" + u + ") + \\alpha_{"+U+"} \\sin " + K + "("+U+"-" + u + ")  &\\mbox{} \\end{array}\\right.  ";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{1 +\\alpha_" + U + "" + U+ "} & \\mbox{ if } " + K + " = 0;\\\\ \\frac{1}{" + K + " \\cos" + K + " " + U + "+ \\alpha_" + U + " \\sin " + K + " " + U + " } & \\mbox{ otherwise} . \\end{array}\\right.   ";symb1 = "";symb2 = "";}sulmarker = 1;}//60if(f=="CCDSNH"){ans1 = "e^{- " + K + " " + u + "}";ans2 = "";ans3 = "";ans4 = "";ans5="";symb1="";symb2="";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="f_{x=0}";ans2="";ans3="";ans4="";symb1="";symb2="";}sulmarker = 1;}//145   Outgoing Diriclet wave, rectangularif ( f=="CCDONH"){ans1 = "\\; e^{-i " + K + "\\," +u+ "}";ans2="";ans3="";ans4="";ans5="";symb1="";symb2="";sulmarker = 1;}//146  Incoming Dirichlet wave, rectangularif ( f=="CCDINH"){ans1 = "\\; e^{i " + K + "\\," +u+ "}";ans2="";ans3="";ans4="";ans5="";symb1="";symb2="";sulmarker = 1;}//         CONSTANT COEFFICIENT EQUATION: NEUMANN CONDITION AT THE LOW END//                    EIGENFUNCTIONS//3if (f=="CCNDHH"){ans1 = "\\cos \\kappa_" + u + " " + u + ""; //changed last u ans2 = " \\kappa_" + u + "=\\frac{\\pi}{2" + U + "},\\frac{3\\pi}{2" + U + "},\\frac{5\\pi}{2" + U + "}, \\ldots  ";ans3 = "\\frac{2}{" + U + "}";ans4 = "";ans5 = ans1;symb1 = "\\sum_{\\kappa_" + u + "}";symb2 = "\\int_{0}^{" + U + "}\\,d" + u;sulmarker = 1;}//4if (f=="CCNNHH"){ans1="\\cos \\kappa_" + u + " " + u + "";ans2=" \\kappa_" + u + " = 0, \\frac{\\pi}{" + U + "},\\frac{2\\pi}{" + U + "},\\frac{3\\pi}{" + U + "}, \\ldots  ";ans3="N_{\\kappa_" + u + "}";ans4=" N_{\\kappa_" + u + "} = \\left\\{\\begin{array}{ll}\\frac{1}{" + U + "} & \\mbox{ if }\\kappa_" + u + " = 0; \\\\ \\frac{2}{" + U + "} & \\mbox{ otherwise} \\end{array} \\right.  "; //new lineans5=ans1;symb1 = "\\sum_{\\kappa_" + u + "}";symb2 = "\\int_{0}^{" + U + "}\\,d" + u;sulmarker = 1;}//7if (f=="CCNRHH"){ans1="\\cos \\kappa_" + u + " " + u + "";ans2="\\\\  \\{\\kappa_" + u + "\\} \\mbox{ are the solutions (maybe imaginary) to } \\\\   \\alpha_" + U + " \\cos \\kappa_" + u + U + " -  \\sin \\kappa_" + u + U +" = 0.  \\\\";ans3="\\frac{2}{" + U + " + \\frac{\\alpha_" + U + " }{\\alpha_" + U + "^2+\\kappa_" + u + "^2}}";ans4="";ans5=ans1;symb1="\\sum_{\\kappa_" + u + "}";symb2="\\int_{0}^{" + U + "}\\,d" + u + " ";sulmarker = 1;}//56if(f=="CCNSHH"){ans1 ="\\cos  \\kappa_" + u + " " + u + "";ans2= "";ans3="\\frac{2}{\\pi}";ans4 = "";ans5="\\cos  \\kappa_" + u + " " + u + " "; symb1="\\int_0^{\\infty} \\,d \\kappa_" + u + ""; symb2="\\int_0^{\\infty} \\,d " + u + "";sulmarker = 1;}//         CONSTANT COEFFICIENT EQUATION: NEUMANN CONDITION AT THE LOW END//                    NONHOMOGENEOUS FACTORS//14  //MAY WANT TO CHANGE THIS TO UNITYif (f=="CCNDHN"){ans1 = "\\cosh " + K + u + "";ans2 = "";ans3 = "\\frac{1}{\\cosh " + K + U + "}";ans4 = "";symb1 = "";symb2 = "";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="f_{x=X}";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1 = "\\cos " + K + u + "";ans2 = "";ans3 = "\\frac{1}{\\cos " + K + U + "}";ans4 = "";symb1 = "";symb2 = "";}sulmarker = 1;}//13if (f=="CCNDNH"){ans1 = "\\eta_" + u + " (" + u + " ; " + K + ")";ans2 = " \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + U + "- " + u + " & \\mbox{ if }" + K + " = 0; \\\\ \\sinh " + K + " (" + U + " - " + u + ")& \\mbox{ otherwise} . \\end{array} \\right.  ";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}- 1 & \\mbox{ if }" + K + " = 0; \\\\ \\frac{- 1}{" + K + "\\cosh " + K + " " + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1="";symb2="";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))     // 1 dim, time{ans1="(x-X)f_{x=0}";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1 = "\\eta_" + u + " (" + u + " ; " + K + ")";ans2 = " \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + U + "- " + u + " & \\mbox{ if }" + K + " = 0; \\\\ \\sin " + K + " (" + U + " - " + u + ")& \\mbox{ otherwise} . \\end{array} \\right.  ";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}- 1 & \\mbox{ if }" + K + " = 0; \\\\ \\frac{- 1}{" + K + "\\cos " + K + " " + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1="";symb2="";}sulmarker = 1;}//16if (f=="CCNNHN"){ans1 = "\\cosh " + K + " " + u + "";ans2 = "";ans3 = "M_{" + K + "}";ans4 = " M_{" + K+ "} = \\left\\{ \\begin{array}{ll}0 & \\mbox{ if }" + K + " =0;\\\\ \\frac{ 1}{" + K + "\\sinh " + K + " " + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1 = "";symb2 = "";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="Cannot\\, solve\\, steady\\, state\\, Neumann\\, problem";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1 = "\\cos " + K + " " + u + "";ans2 = "";ans3 = "M_{" + K + "}";ans4 = " M_{" + K+ "} = \\left\\{ \\begin{array}{ll}0 & \\mbox{ if }" + K + " =0;\\\\ \\frac{ -1}{" + K + "\\sin " + K + " " + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1 = "";symb2 = "";}sulmarker = 1;}//17if (f=="CCNNNH"){ans1 = "\\cosh " + K + " ( " + U + " - " + u + " ) ";ans2 = "";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}0 & \\mbox{ if } " + K + " = 0;\\\\ \\frac{ 1}{" + K + "\\sinh " + K + " " + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1 = ""; symb2 = "";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="Cannot\\, solve\\, steady\\, state\\, Neumann\\, problem";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1 = "\\cos " + K + " ( " + U + " - " + u + " ) ";ans2 = "";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}0 & \\mbox{ if } " + K + " = 0;\\\\ \\frac{ -1}{" + K + "\\sin " + K + " " + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1 = ""; symb2 = "";}sulmarker = 1;}//20if (f=="CCNRHN"){ans1 = "\\cosh " + K + u + "";ans2 = "";ans3 = "M_{" + K + "}";ans4 = " M_{"+ K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{\\alpha_" + U + "} &\\mbox { if } " + K + " = 0; \\\\ \\frac{1}{\\alpha_" + U + "\\cosh " + K + " " + U + " + " +K + " \\sinh " + K + " " + U + "} & \\mbox{ otherwise} . \\end{array}\\right.  ";symb1 = "";symb2 = ""; if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="f_{x=X}/\\alpha_{x=X}";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1 = "\\cos " + K + u + "";ans2 = "";ans3 = "M_{" + K + "}";ans4 = " M_{"+ K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{\\alpha_" + U + "} &\\mbox { if } " + K + " = 0; \\\\ \\frac{1}{\\alpha_" + U + "\\cos " + K + " " + U + " - " +K + " \\sin " + K + " " + U + "} & \\mbox{ otherwise} . \\end{array}\\right.  ";symb1 = "";symb2 = ""; }sulmarker = 1;}//25  This was "corrected" Nov 28; check carefullyif (f=="CCNRNH"){ans1 = "\\eta_" + u + " (" + u + " ; " + K + ")";ans2 = " \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}1 + \\alpha_" + U + " (" + U + " - " + u + ") \\mbox{  if } " + K + " = 0; \\mbox{ otherwise} &\\mbox{}\\\\" + K + " \\cosh " + K + "("+U+"-" + u + ") + \\alpha_{"+U+"} \\sinh " + K + "("+U+"-" + u + ")  &\\mbox{} \\end{array}\\right.  ";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{- 1}{\\alpha_" + U + "}& \\mbox{ if } " + K + " = 0;\\\\ \\frac{- 1/" + K + "}{" + K + "\\sinh " + K + " " + U + "+ \\alpha_" + U + " \\cosh " + K + " " + U + " } & \\mbox{ otherwise} . \\end{array} \\right .  ";symb1 = ""; symb2 = "" ;if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="f_{x=0}\\left(x-\\frac{1+\\alpha_{x=X}X}{\\alpha_{x=X}}\\right)";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1 = "\\eta_" + u + " (" + u + " ; " + K + ")";ans2 = " \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}1 + \\alpha_" + U + " (" + U + " - " + u + ") \\mbox{  if } " + K + " = 0; \\mbox{ otherwise} &\\mbox{}\\\\" + K + " \\cos " + K + "("+U+"-" + u + ") + \\alpha_{"+U+"} \\sin " + K + "("+U+"-" + u + ")  &\\mbox{} \\end{array}\\right.  ";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{- 1}{\\alpha_" + U + "}& \\mbox{ if } " + K + " = 0;\\\\ \\frac{ 1/" + K + "}{" + K + "\\sin " + K + " " + U + "- \\alpha_" + U + " \\cos " + K + " " + U + " } & \\mbox{ otherwise} . \\end{array} \\right .  ";symb1 = ""; symb2 = "" ;}sulmarker = 1;}//61if(f=="CCNSNH"){ans1 = "e^{- " + K + " " + u + "}";ans2 = "";ans3 = "\\left(\\frac{-1}{" + K + "} \\right)";ans4 = "";ans5 = "";symb1 = "";symb2 = "";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="Indeterminant \\, steady-state \\; for \\, Neumann \\, problem.";ans2="";ans3="";ans4="";symb1="";symb2="";}sulmarker = 1;}//147   Outgoing Neumann wave, rectangularif ( f=="CCNONH"){ans1 = "\\; e^{-i " + K + "\\," +u+ "}";ans2="";ans3="\\frac{i}{"+ K + "}";ans4="";ans5="";symb1="";symb2="";sulmarker = 1;}//148   Incoming Neumann wave, rectangularif ( f=="CCNINH"){ans1 = "\\; e^{i " + K + "\\," +u+ "}";ans2="";ans3="\\frac{-i}{"+ K + "}";ans4="";ans5="";symb1="";symb2="";sulmarker = 1;}//          CONSTANT COEFFICIENT EQUATION: ROBIN CONDITION AT THE LOW END//                          EIGENFUNCTIONS//6if (f=="CCRDHH"){ans1="\\; \\eta_" + u + " (" + u + "; \\kappa_" + u + ")";ans2="\\\\ \\eta_" + u + "("+ u + "; \\kappa_" + u + ") = \\sin\\kappa_" + u + " (" + U + "-" + u + ") \\mbox{ where } \\{\\kappa_" + u + "\\} \\mbox{ are the nonzero solutions (maybe imaginary) to } \\\\ \\alpha_{"+u+"=0} \\sin \\kappa_" + u + U + " - \\kappa_"+ u + " \\cos \\kappa_ " + u + U + " = 0; \\\\ \\mbox{also if }\\alpha_{"+u+"=0} " +U + " -1 = 0 \\mbox{ include } \\kappa_" + u + " = 0 , \\eta_" + u + "(" + u + ";0 ) = " + U + " - " + u + " . \\\\";ans3="N_{\\kappa_" + u + "}";ans4=" N_{\\kappa_" + u + "} = \\left\\{ \\begin{array}{ll}\\frac{3}{" + U + "^3} & \\mbox{ if } \\kappa_" + u + " = 0; \\\\ \\frac{2}{" + U + " + \\frac{\\alpha_{"+u+"=0} - 1}{\\alpha_{"+u+"=0}^2 + \\kappa_" + u + "{}^2 }} & \\mbox{ otherwise} . \\end{array} \\right.  ";ans5=ans1;symb1="\\sum_{\\kappa_" + u + "}";symb2="\\int_{0}^{" + U + "}\\,d" + u + " ";sulmarker = 1;}//8if (f=="CCRNHH"){ans1="\\cos \\kappa_" + u + " (" + U + " - " + u + ")";ans2="\\\\ \\{\\kappa_" + u + "\\} \\mbox{ are the solutions (maybe imaginary) to } \\alpha_{"+u+"=0} \\cos \\kappa_" +u + U + " + \\kappa_" + u + "\\sin \\kappa_" + u + U + " = 0. \\\\";ans3="\\frac{2}{" + U + " -\\frac{\\alpha_{"+u+"=0}}{\\alpha_{"+u+"=0}^2 + \\kappa_" + u + "^2}}"; ans4=""; ans5=ans1; symb1="\\sum_{\\kappa_" + u + "}";symb2="\\int_{0}^{" + U + "}\\,d" + u + " ";sulmarker = 1;}//9if (f=="CCRRHH"){ans1="\\; \\eta_" + u + " (" + u + " ; \\kappa_" + u + ")"; ans2="\\eta_" + u + "(" + u + " ; \\kappa_" + u + ") = \\sin[\\kappa_" + u + " "  + u + " + \\arctan(\\frac{- \\kappa_" + u + "}{\\alpha_{"+u+"=0}}) ] \\mbox{ where } \\{\\kappa_" + u + "\\} \\mbox{ are the nonzero solutions (maybe imaginary)} \\\\ \\mbox{to      } - \\alpha_" + U + " \\sin [\\kappa_" + u + U + " + \\arctan(\\frac{- \\kappa_" + u + "}{\\alpha_{"+u+"=0}}) ] = \\kappa_" + u + "\\cos [\\kappa_" + u + U + " +\\arctan(\\frac{- \\kappa_" + u + "}{\\alpha_{"+u+"=0}}) ]; \\\\ \\mbox{also if }\\alpha_" + U + " -\\alpha_" + U + " \\alpha_{"+u+"=0} " + U + " - \\alpha_{"+u+"=0} = 0 \\mbox{ include }\\kappa_"+ u + " = 0 , \\eta_" + u + "(" + u + " ; 0) = 1 - \\alpha_{"+u+"=0} " + u + ". \\\\";ans3="N_{\\kappa_" + u + "}";ans4=" N_{\\kappa_" + u + "} = \\left\\{ \\begin{array}{ll}\\frac{3}{3 " + U + " -3\\alpha_{"+u+"=0}" +  U + "^2 + \\alpha_{"+u+"=0}^2 " + U + "^3} & \\mbox{ if } \\kappa_" + u + " = 0; \\\\ \\frac{2}{" + U +  " +\\frac{\\alpha_" + U + " }{\\alpha_" + U +"{}^2 + \\kappa_" + u + "{}^2} - \\frac{\\alpha_{"+u+"=0}}{\\alpha_{"+u+"=0}^2 + \\kappa_" + u + "{}^2 }} & \\mbox{ otherwise} . \\end{array}\\right.  ";ans5=ans1;symb1="\\sum_{\\kappa_" + u + "}";symb2="\\int_0^{" + U + "}\\,d" + u + " ";sulmarker = 1;} //58if(f=="CCRSHH"){ans1 = "\\sin [\\kappa_" + u + " " + u + " - \\arctan \\frac{\\kappa_" + u + "}{\\alpha_{"+u+"=0}}]";ans2 = "( \\mbox{ if }\\alpha_{"+u+"=0} > 0, \\mbox{another term } e^{- \\alpha_{"+u+"=0}"+ u + "} \\mbox{must be included and spectrum is mixed - see text.})\\\\";ans3="\\frac{2}{\\pi}";ans4="";ans5=ans1;symb1="\\int_{0}^{\\infty} \\,d \\kappa_" + u + ""; symb2="\\int_{0}^{\\infty} \\,d " + u + "";sulmarker = 1;}//      

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -