⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 usfkad6_05.cpp

📁 Solutions are obtained for Poissson, diffusion, or wave PDEs homogeneous or nonhomogeneous equations
💻 CPP
📖 第 1 页 / 共 5 页
字号:
		if(eqtype[1]==2)  // 2 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y;s)";				if(eqtype[7]==1)					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\left(\\frac{F_{interior}(x,y;s)+\\Psi(x,y,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(x,y,t=0)}{\\kappa_x^2+\\kappa_y^2+s^2}\\right)";				else					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\frac{\\Psi(x,y,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(x,y,t=0)}{\\kappa_x^2+\\kappa_y^2+s^2}";			}			if(eqtype[2]==1)  // polar coords			{				AAA="A(\\kappa_r, \\kappa_{\\theta};s)";				if(eqtype[7]==1)					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\left(\\frac{F_{interior}(r, \\theta ;s)+\\Psi(r, \\theta,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(r, \\theta,t=0)}{\\kappa_r^2+s^2}\\right)";				else					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\frac{\\Psi(r, \\theta,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(r, \\theta,t=0)}{\\kappa_r^2+s^2}";			}		}		if(eqtype[1]==3)  // 3 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y, \\kappa_z ;s)";				if(eqtype[7]==1)					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\left(\\frac{F_{interior}(x,y,z ;s)+\\Psi(x,y,z,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(x,y,z,t=0)}{\\kappa_x^2+\\kappa_y^2+\\kappa_z^2+s^2}\\right)";				else					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\frac{\\Psi(x,y,z,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(x,y,z,t=0)}{\\kappa_x^2+\\kappa_y^2+\\kappa_z^2+s^2}";			}			if(eqtype[2]==1)  // cylindrical coords			{				AAA="A(\\kappa_{r:\\theta},\\kappa_{\\theta}, \\kappa_z ;s)";				if(eqtype[7]==1)					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\left(\\frac{F_{interior}(r, \\theta , z ;s)+\\Psi(r, \\theta , z ,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(r, \\theta , z ,t=0)}{\\kappa_{r:\\theta}^2+\\kappa_z^2+s^2}\\right)";				else					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\frac{(r, \\theta , z ;s)+\\Psi(r, \\theta , z ,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(r, \\theta , z ,t=0)}{\\kappa_{r:\\theta}^2+\\kappa_z^2+s^2}";			}			if(eqtype[2]==2)  // spherical coords			{				AAA="A_{\\ell m}(\\kappa_{\\ell: r} ;s)";				if(eqtype[7]==1)					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\left(\\frac{F_{interior}(\\theta, \\phi, {r};s)+\\Psi(\\theta, \\phi, {r},t=0)+s\\frac{\\partial \\Psi}{\\partial t}(\\theta, \\phi, {r},t=0)}{\\kappa_{\\ell: r}^2+s^2}\\right)";				else					nonhomf="\\\\ \\hspace*{2.6in} \\times  \\frac{\\Psi(\\theta, \\phi, {r},t=0)+s\\frac{\\partial \\Psi}{\\partial t}(\\theta, \\phi, {r},t=0)}{\\kappa_{\\ell: r}^2+s^2}";			}		}	}		if(eqtype[0]==5)   // frequency domain	{		if(eqtype[1]==1)  // 1 dim		{			AAA="A(\\kappa_x;\\omega)";			nonhomf="\\frac{F_{interior}(x;\\omega)}{\\kappa_x^2-\\omega^2}";		}		if(eqtype[1]==2)  // 2 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y;\\omega)";				nonhomf="\\frac{F_{interior}(x,y;\\omega)}{\\kappa_x^2+\\kappa_y^2-\\omega^2}";			}			if(eqtype[2]==1)  // polar coords			{				AAA="A(\\kappa_r, \\kappa_{\\theta};\\omega)";				nonhomf="\\frac{F_{interior}(r, \\theta ;\\omega)}{\\kappa_r^2-\\omega^2}";			}		}		if(eqtype[1]==3)  // 3 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y, \\kappa_z ;\\omega)";				nonhomf="\\\\ \\hspace*{2.6in} \\times  \\frac{F_{interior}(x,y,z ;\\omega)}{\\kappa_x^2+\\kappa_y^2+\\kappa_z^2-\\omega^2}";			}			if(eqtype[2]==1)  // cylindrical coords			{				AAA="A(\\kappa_{r:\\theta},\\kappa_{\\theta}, \\kappa_z ;\\omega)";				nonhomf="\\\\ \\hspace*{2.6in} \\times  \\frac{F_{interior}(r, \\theta , z ;\\omega)}{\\kappa_{r:\\theta}^2+\\kappa_z^2-\\omega^2}";			}			if(eqtype[2]==2)  // spherical coords			{				AAA="A_{\\ell m}(\\kappa_{\\ell: r} ;\\omega)";				nonhomf="\\frac{F_{interior}(\\theta, \\phi, {r};\\omega)}{\\kappa_{\\ell: r}^2-\\omega^2}";			}		}	}	A.nonhomf=nonhomf;A.AAA=AAA;return A;}// ****************KAPGRTRpdeans KAPGRTR(pdeans A, int t){std::string  nonhomf, AAA, Nonans1;if(t==0)   //  diffusion IC{			if(eqtype[1]==1)  // 1 dim		{			AAA="A(\\kappa_x)";			nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(x;0)-\\Psi_{steady \\; state}]";			Nonans1 = "e^{-\\kappa_x^2t}";		}		if(eqtype[1]==2)  // 2 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y)";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(x,y;0)-\\Psi_{steady \\; state}]";			Nonans1 = "e^{-(\\kappa_x^2+\\kappa_y^2)t}";			}			if(eqtype[2]==1)  // polar coords			{				AAA="A(\\kappa_{\\theta},\\kappa_{r:\\theta})";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(\\theta,r;0)-\\Psi_{steady \\; state}]";			Nonans1 = "e^{-\\kappa_{r:\\theta}^2t}";			}		}		if(eqtype[1]==3)  // 3 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y, \\kappa_z)";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(x,y,z;0)-\\Psi_{steady \\; state}]";			Nonans1 = "e^{-(\\kappa_x^2+\\kappa_y^2+\\kappa_z^2)t}";			}			if(eqtype[2]==1)  // cylindrical coords			{				AAA="A(\\kappa_{r:\\theta},\\kappa_{\\theta}, \\kappa_z)";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(r, \\theta, z;0)-\\Psi_{steady \\; state}]";			Nonans1 = "\\\\ \\hspace*{3.0in}  e^{-(\\kappa_{r:\\theta}^2+\\kappa_z^2)t}";			}			if(eqtype[2]==2)  // spherical coords			{				AAA="A_{\\ell m}(\\kappa_{\\ell: r})";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(\\theta,\\phi,{r};0)-\\Psi_{steady \\; state}]";			Nonans1 = "e^{-\\kappa_{r}^2t}";			}		}		}		if(t==1)   //  wave Initial Value{			if(eqtype[1]==1)  // 1 dim		{			AAA="A(\\kappa_x)";			nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(x;0)-\\Psi_{steady \\; state}]";			Nonans1 = "\\cos \\kappa_xt";		}		if(eqtype[1]==2)  // 2 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y)";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(x,y;0)-\\Psi_{steady \\; state}]";			Nonans1 = "\\cos \\sqrt{\\kappa_x^2+\\kappa_y^2}t";			}			if(eqtype[2]==1)  // polar coords			{				AAA="A(\\kappa_{\\theta},\\kappa_{r:\\theta})";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(\\theta,r;0)-\\Psi_{steady \\; state}]";			Nonans1 = "\\cos \\kappa_{r:\\theta}t";			}		}		if(eqtype[1]==3)  // 3 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y, \\kappa_z)";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(x,y,z;0)-\\Psi_{steady \\; state}]";			Nonans1 = "\\cos \\sqrt{\\kappa_x^2+\\kappa_y^2+\\kappa_z^2}t";			}			if(eqtype[2]==1)  // cylindrical coords			{				AAA="A(\\kappa_{r:\\theta},\\kappa_{\\theta}, \\kappa_z)";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(r, \\theta, z;0)-\\Psi_{steady \\; state}]";			Nonans1 = "\\\\ \\hspace*{3.0in}  \\cos \\sqrt{\\kappa_{r:\\theta}^2+\\kappa_z^2}t";			}			if(eqtype[2]==2)  // spherical coords			{				AAA="A_{\\ell m}(\\kappa_{\\ell: r})";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; [\\Psi(\\theta,\\phi,{r};0)-\\Psi_{steady \\; state}]";			Nonans1 = "\\cos \\kappa_{r}t";			}		}		}		if(t==2)   //  wave Initial Velocity{			if(eqtype[1]==1)  // 1 dim		{			AAA="A(\\kappa_x)";			nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; \\frac{\\partial \\Psi(x;0)}{\\partial t}";			Nonans1 = "\\frac{\\sin \\kappa_xt}{\\kappa_x}";		}		if(eqtype[1]==2)  // 2 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y)";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; \\frac{\\partial \\Psi(x,y;0)}{\\partial t}";			Nonans1 = "\\frac{\\sin \\sqrt{\\kappa_x^2+\\kappa_y^2}t}{\\sqrt{\\kappa_x^2+\\kappa_y^2}}";			}			if(eqtype[2]==1)  // polar coords			{				AAA="A(\\kappa_{\\theta},\\kappa_{r:\\theta})";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; \\frac{\\partial \\Psi(\\theta,r;0)}{\\partial t}";			Nonans1 = "\\frac{\\sin \\kappa_{r:\\theta}t}{\\kappa_r:\\theta}";			}		}		if(eqtype[1]==3)  // 3 dim		{			if(eqtype[2]==0)  // Rect coords			{				AAA="A(\\kappa_x,\\kappa_y, \\kappa_z)";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; \\frac{\\partial \\Psi(x,y,z;0)}{\\partial t}";			Nonans1 = "\\frac{\\sin \\sqrt{\\kappa_x^2+\\kappa_y^2+\\kappa_z^2}t}{\\sqrt{\\kappa_x^2+\\kappa_y^2+\\kappa_z^2}}";			}			if(eqtype[2]==1)  // cylindrical coords			{				AAA="A(\\kappa_{r:\\theta},\\kappa_{\\theta}, \\kappa_z)";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; \\frac{\\partial \\Psi(r, \\theta , z;0)}{\\partial t}";			Nonans1 = "\\\\ \\hspace*{3.0in}  \\frac{\\sin \\sqrt{\\kappa_{r:\\theta}^2+\\kappa_z^2}t}{\\sqrt{\\kappa_{r}^2+\\kappa_z^2}}";			}			if(eqtype[2]==2)  // spherical coords			{				AAA="A_{\\ell m}(\\kappa_{\\ell: r})";				nonhomf=" \\\\ \\hspace*{2.6in} \\times \\; \\frac{\\partial \\Psi(\\theta,\\phi,{r};0)}{\\partial t}";			Nonans1 = "\\frac{\\sin \\kappa_{\\ell: r}t}{\\kappa_{\\ell: r}}";			}		}		}	A.nonhomf=nonhomf;A.AAA=AAA;A.Nonans1=Nonans1;return A;}pdeans sul(pdeans C, int r){	std::string f, u, U, K;/*  Global variable formulation  */std::string ans1, ans2, ans3, ans4, ans5, symb1, symb2;//sub1, sub2, sub3, sub4, sub5, sy1, sy2;//	sub1=ans1; //	sub2=ans2; //	sub3=ans3; //	sub4=ans4; //	sub5=ans5; //	sy1=symb1;//	sy2=symb2;	/* Back to old */// int r;// r=0;f = C.ans1;u = C.ans2;U = C.ans3;// K = C.ans4;K = C.KAPPA;int sulmarker;sulmarker = 0;  //If sulmarker changes to 1, sol'n is in sul; else, in sulsul. //  This is done to make the number of options in SUL smaller, so it will compile.//   CONSTANT COEFFICIENT EQUATION: DIRICHLET CONDITION AT THE LOW END//                 EIGENFUNCTIONS//1if (f=="CCDDHH"){ans1 = "\\sin\\kappa_" + u + " " + u + " "; // changed last uans2 = " \\kappa_" + u + "=\\frac{\\pi}{" + U + "},\\frac{2\\pi}{" + U +"},\\frac{3\\pi}{" + U + "}, \\ldots  ";ans3 = "\\frac{2}{" + U + "}";ans4 = "";ans5 = ans1;symb1 = "\\sum_{\\kappa_" + u + "}";symb2 = "\\int_{0}^{" + U + "}\\,d" + u;sulmarker = 1;} //2if (f=="CCDNHH"){ans1 = "\\sin \\kappa_" + u + " " + u + " "; // changed last uans2 = " \\kappa_" + u + " = \\frac{\\pi}{2" + U + "},\\frac{3\\pi}{2" + U + "},\\frac{5\\pi}{2" + U + "}, \\ldots  ";ans3 = "\\frac{2}{" + U + "}"; ans4 = ""; ans5 = ans1;symb1 = "\\sum_{\\kappa_" + u + "}";symb2 = "\\int_{0}^{" + U + "}\\,d" + u;sulmarker = 1;}//5if (f=="CCDRHH"){ans1="\\; \\eta_" + u + " (" + u + " ; \\kappa_" + u + ")";ans2="\\\\  \\eta_" + u + "(" + u + " ; \\kappa_" + u + ") = \\sin \\kappa_" + u + " " + u +" \\mbox{ where } \\{\\kappa_" + u + "\\} \\mbox{ are the nonzero solutions (maybe imaginary) to  }\\\\ \\alpha_" + U + " \\sin \\kappa_" + u + U + "  + \\kappa_"+ u + " \\cos  \\kappa_" + u + U + " = 0; \\\\ \\mbox{ also if } \\alpha_" + U +  U + " + 1 = 0 \\mbox{ include } \\kappa_" + u + " = 0 , \\eta_" + u + "(" + u + " ; 0) = " + u + ".  \\\\";ans3="N_{\\kappa_" + u + "}";ans4=" N_{\\kappa_" + u + "} = \\left\\{ \\begin{array}{ll}\\frac{3}{" + U + "^3}& \\mbox {if } \\kappa_" + u + " = 0; \\\\ \\frac{2}{" + U + " + (\\alpha_" + U + " + 1)/(\\alpha_" + U + "{}^2 + \\kappa_" + u +  "{}^2)} & \\mbox{ otherwise} . \\end{array} \\right.  "; //new lineans5 =ans1;symb1 = "\\sum_{\\kappa_" + u + "}";symb2 = "\\int_{0}^{" + U + "}\\,d" + u;sulmarker = 1;}//55if(f=="CCDSHH"){ans1 = "\\sin  \\kappa_" + u + " " + u + "";ans2 = "";ans3 ="\\frac{2}{\\pi}";ans4 ="";ans5 ="\\sin  \\kappa_" + u + " " + u + "";symb1 ="\\int_{0}^{\\infty} \\,d \\kappa_" + u + "";symb2="\\int_{0}^{\\infty} \\,d " + u + "";sulmarker = 1;}//   CONSTANT COEFFICIENT EQUATION: DIRICHLET CONDITION AT THE LOW END//                 NONHOMOGENEOUS FACTORS//10if (f=="CCDDHN"){ans1="\\eta_" + u + " (" + u + " ; " + K + ")";ans2=" \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + u + " & \\mbox{ if } " + K + " = 0;\\\\ \\sinh " + K + "" + u + " & \\mbox{ otherwise} . \\end{array}\\right.  ";ans3="M_{" + K + "}";ans4=" M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{" + U + "} & \\mbox{ if } " + K + "= 0, \\\\ \\frac{1}{\\sinh " + K + "" + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  "; symb1=""; symb2="";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="\\frac{x}{X}f_{x=X}";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1="\\eta_" + u + " (" + u + " ; " + K + ")";ans2=" \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + u + " & \\mbox{ if } " + K + " = 0;\\\\ \\sin " + K + "" + u + " & \\mbox{ otherwise} . \\end{array}\\right.  ";ans3="M_{" + K + "}";ans4=" M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{" + U + "} & \\mbox{ if } " + K + "= 0, \\\\ \\frac{1}{\\sin " + K + "" + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  "; symb1=""; symb2="";}sulmarker = 1;}//11if (f=="CCDDNH"){ans1="\\; \\eta_" + u + " (" + u + " ; " + K + ")";ans2=" \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + U + " - "+ u + " & \\mbox{ if } " + K + " = 0; \\\\ \\sinh " + K + " (" + U + " - " + u + ")& \\mbox{ otherwise} . \\end{array} \\right.  ";ans3="M_{" + K + "}";ans4=" M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{" + U + "} & \\mbox{ if } "+ K + " = 0; \\\\ \\frac{1}{\\sinh " + K + "" + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1="";symb2="";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="\\frac{X-x}{X}f_{x=0}";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1="\\; \\eta_" + u + " (" + u + " ; " + K + ")";ans2=" \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + U + " - "+ u + " & \\mbox{ if } " + K + " = 0; \\\\ \\sin " + K + " (" + U + " - " + u + ")& \\mbox{ otherwise} . \\end{array} \\right.  ";ans3="M_{" + K + "}";ans4=" M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{" + U + "} & \\mbox{ if } "+ K + " = 0; \\\\ \\frac{1}{\\sin " + K + "" + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1="";symb2="";}sulmarker = 1;}//12if (f=="CCDNHN"){ans1="\\; \\eta_" + u + " (" + u + " ; " + K + ")";ans2=" \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + u + " & \\mbox{ if } " + K + "= 0, \\\\ \\sinh " + K + " " + u + " &\\mbox{ otherwise} . \\end{array} \\right.  ";ans3="M_{" + K + "}";ans4=" M_{" + K+ "} = \\left\\{ \\begin{array}{ll}1 & \\mbox{ if } " + K + "= 0; \\\\ \\frac{1}{" + K + "\\cosh " + K + "" + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1=""; symb2=""; if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="f_{x=X}x";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1="\\; \\eta_" + u + " (" + u + " ; " + K + ")";ans2=" \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + u + " & \\mbox{ if } " + K + "= 0, \\\\ \\sin " + K + " " + u + " &\\mbox{ otherwise} . \\end{array} \\right.  ";ans3="M_{" + K + "}";ans4=" M_{" + K+ "} = \\left\\{ \\begin{array}{ll}1 & \\mbox{ if } " + K + "= 0; \\\\ \\frac{1}{" + K + "\\cos " + K + "" + U + "} & \\mbox{ otherwise} . \\end{array} \\right.  ";symb1=""; symb2=""; }sulmarker = 1;}//15 //MAY WANT TO CHANGE THIS TO UNITYif (f=="CCDNNH"){ans1 = "\\cosh " + K + " (" + U + " - " + u + ")";ans2 = "";ans3 = "\\frac{1}{\\cosh " + K + " " + U + "}";ans4 = "";symb1 = "";symb2 = "";if (eqtype[1] == 1 && (eqtype[0]==1 || eqtype[0]==3))  // 1 dim, time{ans1="f_0";ans2="";ans3="";ans4="";symb1="";symb2="";}if (eqtype[1] == 1 && eqtype[0]==5)  // 1 dim, freq{ans1 = "\\cos " + K + " (" + U + " - " + u + ")";ans2 = "";ans3 = "\\frac{1}{\\cos " + K + " " + U + "}";ans4 = "";symb1 = "";symb2 = "";}sulmarker = 1;}//18if (f=="CCDRHN"){ans1 = "\\eta_" + u + " (" + u + " ; " + K + ")";ans2 = " \\eta_" + u + "(" + u + " ; " + K + ") = \\left\\{ \\begin{array}{ll}" + u + "& \\mbox{ if } " + K + "= 0;\\\\ \\sinh " + K + " " + u + " &\\mbox{ otherwise } . \\end{array} \\right.  ";ans3 = "M_{" + K + "}";ans4 = " M_{" + K + "} = \\left\\{ \\begin{array}{ll}\\frac{1}{\\alpha_" + U + " " + U +" +1} & \\mbox{ if } " + K + " = 0;\\\\ \\frac{1}{\\alpha_" + U + "\\sinh " + K + " "+ U + " + " + K + " \\cosh " + K + " " + U + "} & \\mbox{ otherwise } . \\end{array} \\right.  ";symb1 = "";symb2 = "";

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -