📄 usfkad6_05.cpp
字号:
AAA="A(s;\\kappa_{\\theta}, \\,\\kappa_{r : \\theta})"; nonhomf="F_{z=" + BC + "}(s;r, \\theta)"; } } if(r==3) // theta { KAPPA="\\sqrt{\\kappa_{r:z}^2+s}"; AAA = "A(s;\\kappa_z,\\kappa_{r:z})"; nonhomf="F_{\\theta=" + BC + "}(s;z,r)"; } if(r==5) // rho { KAPPA="\\sqrt{\\kappa_z^2+s}"; AAA = "A(s; \\kappa_{\\theta}, \\kappa_z)"; nonhomf="F_{r=" + BC + "}(s; z, \\theta)"; } if(r==6) // r 3-D { KAPPA="\\sqrt{-s}"; AAA = "A(s)"; nonhomf="F_{r=" + BC + "}(s; \\theta, \\phi)"; } } } if(eqtype[0]==3) // wave, time { if(eqtype[1]==2) // 2-D (1-D is special) { if(r==0) //x { KAPPA = "\\kappa_y"; AAA="A(\\kappa_y)"; nonhomf="f_{x=" + BC + "}(y)"; } if(r==1) // y { KAPPA = "\\kappa_x"; AAA="A(\\kappa_x)"; nonhomf="f_{y=" + BC + "}(x)"; } if(r==3) // theta { KAPPA = "\\kappa_{r}"; AAA="A(\\kappa_{r})"; nonhomf="f_{\\theta=" + BC + "}(r)"; } if(r==4) // r 2-D { KAPPA = "\\kappa_{\\theta}"; AAA="A(\\kappa_{\\theta})"; nonhomf="f_{r=" + BC + "}(\\theta)"; } } if(eqtype[1]==3) // 3-D { if(r==0) // x { KAPPA="\\sqrt{\\kappa_y^2+\\kappa_z^2}"; AAA="A(\\kappa_y, \\, \\kappa_z)"; nonhomf="f_{x=" + BC + "}(y,z)"; } if(r==1) // y { KAPPA="\\sqrt{\\kappa_x^2+\\kappa_z^2}"; AAA="A(\\kappa_x, \\, \\kappa_z)"; nonhomf="f_{y=" + BC + "}(x,z)"; } if(r==2) // z { if(eqtype[2]==0) // rect { KAPPA="\\sqrt{\\kappa_x^2+\\kappa_y^2}"; AAA="A(\\kappa_x, \\, \\kappa_y)"; nonhomf="f_{z=" + BC + "}(x,y)"; } if(eqtype[2]==1) // cyl { KAPPA="\\kappa_{r:\\theta}"; AAA = "A(\\kappa_{\\theta},\\kappa_{r:\\theta})"; nonhomf="f_{z=" + BC + "}(\\theta,r)"; } } if(r==3) // theta { KAPPA="\\kappa_{r:z}"; AAA = "A(\\kappa_z,\\kappa_{r:z})"; nonhomf="f_{\\theta=" + BC + "}(z,r)"; } if(r==5) // rho { KAPPA="\\kappa_z"; AAA = "A(\\kappa_{\\theta},\\kappa_z)"; nonhomf="f_{r=" + BC + "}(\\theta, z)"; } if(r==6) // r 3-D { AAA="A_{\\ell m}"; nonhomf="f_{r=" + BC + "}(\\theta,\\phi)"; } } } if(eqtype[0]==4) // wave, s plane { if(eqtype[1]==1) // 1-D { KAPPA=" s"; AAA="A(s)"; nonhomf="F_{x=" + BC + "}(s)"; } if(eqtype[1]==2) // 2-D { if(r==0) // x { KAPPA="\\sqrt{\\kappa_y^2+s^2}"; AAA="A(s;\\kappa_y)"; nonhomf="F_{x=" + BC + "}(s;y)"; } if(r==1) // y { KAPPA="\\sqrt{\\kappa_x^2+s^2}"; AAA="A(s;\\kappa_x)"; nonhomf="F_{y=" + BC + "}(s;)"; } if(r==3) // theta { KAPPA = "\\sqrt{\\kappa_r^2+s^2}"; AAA="A(s;\\kappa_r)"; nonhomf="f_{\\theta=" + BC + "}(s;r)"; } if(r==4) // r 2-D { KAPPA = "s"; AAA="A(s;\\kappa_{\\theta})"; nonhomf="f_{r=" + BC + "}(s;\\theta)"; } //**************??????????????? } if(eqtype[1]==3) // 3-D { if(r==0) // x { KAPPA="\\sqrt{\\kappa_y^2+\\kappa_z^2+s^2}"; AAA="A(s;\\kappa_y,\\kappa_z)"; nonhomf="F_{x=" + BC + "}(s;y,z)"; } if(r==1) // y { KAPPA="\\sqrt{\\kappa_x^2+\\kappa_z^2+s^2}"; AAA="A(s;\\kappa_x,\\kappa_z)"; nonhomf="F_{y=" + BC + "}(s;x,z)"; } if(r==2) // z { if(eqtype[2]==0) // rect { KAPPA="\\sqrt{\\kappa_x^2+\\kappa_y^2+s^2}"; AAA="A(s;\\kappa_x,\\kappa_y)"; nonhomf="F_{z=" + BC + "}(s;x,y)"; } if(eqtype[2]==1) // cyl { KAPPA="\\sqrt{\\kappa_{r:\\theta}^2+s^2}"; AAA = "A(s;\\kappa_{\\theta},\\kappa_{r:\\theta})"; nonhomf="F_{z=" + BC + "}(s;\\theta,r)"; } } if(r==3) // theta { KAPPA="\\sqrt{\\kappa_{r:z}^2+s^2}"; AAA = "A(s;\\kappa_z,\\kappa_{r:z})"; nonhomf="F_{\\theta=" + BC + "}(s;z,r)"; } //if(r==5) // rho //{ // KAPPA="\\sqrt{\\kappa_z^2+s}"; // AAA = "A(s; \\kappa_{\\theta}, \\kappa_z)"; // nonhomf="F_{r=" + BC + "}(s; z, \\theta)"; //} if(r==5) // rho { KAPPA="\\sqrt{\\kappa_z^2+s^2}"; AAA="A(s; \\kappa_{\\theta}, \\kappa_z)"; nonhomf="F_{r=" + BC + "}(s; \\theta, z)"; } if(r==6) { KAPPA="is"; AAA="A(s; \\ell, m)"; nonhomf="F_{r=" + BC + "}(s; \\theta, z)"; } } } if(eqtype[0]==5) // wave, frequency { if(eqtype[1]==1) // 1-D { KAPPA=" \\omega ";/* if (mtrx[r][5]=="O") { KAPPA=" \\omega"; } if (mtrx[r][5]=="I") { KAPPA=" \\omega"; }*/ AAA="A(\\omega)"; nonhomf="F_{x=" + BC +"}(\\omega)"; } if(eqtype[1]==2) // 2-D { if(r==0) // x { KAPPA="\\sqrt{\\kappa_y^2-\\omega^2}"; if (mtrx[r][5]=="O") { KAPPA=" \\sqrt{\\omega^2-\\kappa_y^2}"; } if (mtrx[r][5]=="I") { KAPPA=" \\sqrt{\\omega^2-\\kappa_y^2}"; } AAA="A(\\omega,\\kappa_y)"; nonhomf="F_{x=" + BC +"}(\\omega,y)"; } if(r==1) // y { KAPPA="\\sqrt{\\kappa_x^2-\\omega^2}"; if (mtrx[r][5]=="O") { KAPPA=" \\sqrt{\\omega^2-\\kappa_x^2}"; } if (mtrx[r][5]=="I") { KAPPA=" \\sqrt{\\omega^2-\\kappa_x^2}"; } AAA="A(\\omega,\\kappa_x)"; nonhomf="F_{y=" + BC +"}(\\omega,x)"; } if(r==3) // theta { KAPPA = "\\sqrt{\\kappa_r^2-\\omega^2}"; AAA="A(\\omega; \\kappa_r)"; nonhomf="f_{\\theta=" + BC + "}(\\omega;r)"; } if(r==4) // r 2-D { KAPPA = "i \\omega"; AAA="A(\\omega;\\kappa_{\\theta})"; nonhomf="f_{r=" + BC + "}(\\omega;\\theta)"; } //**************??????????????? } if(eqtype[1]==3) // 3-D { if(r==0) // x { KAPPA="\\sqrt{\\kappa_y^2+\\kappa_z^2-\\omega^2}"; if (mtrx[r][5]=="O") { KAPPA="\\sqrt{\\omega^2-\\kappa_y^2-\\kappa_z^2}"; } if (mtrx[r][5]=="I") { KAPPA=" \\sqrt{\\omega^2-\\kappa_y^2-\\kappa_z^2}"; } AAA="A(\\omega;\\kappa_y,\\kappa_z)"; nonhomf="F_{x=" + BC+ "}(\\omega;y,z)"; } if(r==1) // y { KAPPA="\\sqrt{\\kappa_x^2+\\kappa_z^2-\\omega^2}"; if (mtrx[r][5]=="O") { KAPPA=" \\sqrt{\\omega^2-\\kappa_x^2-\\kappa_z^2}"; } if (mtrx[r][5]=="I") { KAPPA=" \\sqrt{\\omega^2-\\kappa_x^2-\\kappa_z^2}"; } AAA="A(\\omega;\\kappa_x,\\kappa_z)"; nonhomf="F_{y=" + BC+ "}(\\omega;x,z)"; } if(r==2) // z { if(eqtype[2]==0) // rect { KAPPA="\\sqrt{\\kappa_x^2+\\kappa_y^2-\\omega^2}"; if (mtrx[r][5]=="O") { KAPPA=" \\sqrt{\\omega^2-\\kappa_x^2-\\kappa_y^2}"; } if (mtrx[r][5]=="I") { KAPPA=" \\sqrt{\\omega^2-\\kappa_x^2-\\kappa_y^2}"; } AAA="A(\\omega;\\kappa_x,\\kappa_y)"; nonhomf="F_{z=" + BC+ "}(\\omega;x,y)"; } if(eqtype[2]==1) // cyl { KAPPA="\\sqrt{\\kappa_{r:\\theta}^2- \\omega^2}"; if (mtrx[r][5]=="O") { KAPPA=" \\sqrt{\\omega^2-\\kappa_{r:\\theta}^2}"; } if (mtrx[r][5]=="I") { KAPPA=" \\sqrt{\\omega^2-\\kappa_{r:\\theta}^2}"; } AAA = "A(\\omega;\\kappa_{\\theta},\\kappa_{r:\\theta})"; nonhomf="F_{z=" + BC + "}(\\omega;\\theta,r)"; } } if(r==3) // theta { KAPPA="\\sqrt{\\kappa_{r:z}^2-\\omega^2}"; AAA = "A(\\omega;\\kappa_z,\\kappa_{r:z})"; nonhomf="F_{\\theta=" + BC + "}(\\omega;z,r)"; } if(r==5) // rho { KAPPA="\\sqrt{\\kappa_z^2-\\omega^2}"; AAA = "A(\\omega; \\kappa_{\\theta}, \\kappa_z)"; nonhomf="F_{r=" + BC + "}(\\omega; z, \\theta)"; } if(r==5) // rho { KAPPA="\\sqrt{\\kappa_z^2-\\omega^2}"; if (mtrx[r][5]=="O") { KAPPA=" \\sqrt{\\omega^2-\\kappa_z^2}"; } if (mtrx[r][5]=="I") { KAPPA=" \\sqrt{\\omega^2-\\kappa_z^2}"; } AAA = "A(\\omega;\\kappa_{\\theta},\\kappa_z)"; nonhomf="F_{r=" + BC + "}(\\omega;\\theta,z)"; } if(r==6) // r 3-D { KAPPA="\\omega";/* if (mtrx[r][5]=="O") { KAPPA=" \\omega"; } if (mtrx[r][5]=="I") { KAPPA="\\omega"; } */ AAA = "A(\\omega;\\ell, m)"; nonhomf="F_{r=" + BC + "}(\\omega;\\theta,\\phi)"; } } }C.KAPPA=KAPPA;C.nonhomf=nonhomf;C.AAA=AAA;return C;} // ************* KAPPAGR ********pdeans KAPPAGR(pdeans A)// Puts the coeff in AAA, and the nohomog function in nonhomf or the Green's term{ std::string nonhomf, AAA; if(eqtype[0]==0 || eqtype[0]==1 || eqtype[0]==3) // time domain { if(eqtype[1]==1) // 1 dim { AAA="A(\\kappa_x)"; nonhomf="\\frac{f_{interior}(x)}{\\kappa_x^2}"; } if(eqtype[1]==2) // 2 dim { if(eqtype[2]==0) // Rect coords { AAA="A(\\kappa_x,\\kappa_y)"; nonhomf="\\frac{f_{interior}(x,y)}{\\kappa_x^2+\\kappa_y^2}"; } if(eqtype[2]==1) // polar coords { AAA="A(\\kappa_r, \\kappa_{\\theta})"; nonhomf="\\frac{f_{interior}(r, \\theta)}{\\kappa_r^2}"; } } if(eqtype[1]==3) // 3 dim { if(eqtype[2]==0) // Rect coords { AAA="A(\\kappa_x,\\kappa_y, \\kappa_z)"; nonhomf="\\\\ \\hspace*{2.6in} \\times \\frac{f_{interior}(x,y,z)}{\\kappa_x^2+\\kappa_y^2+\\kappa_z^2}"; } if(eqtype[2]==1) // cylindrical coords { AAA="A(\\kappa_{r:\\theta},\\kappa_{\\theta}, \\kappa_z)"; nonhomf="\\\\ \\hspace*{2.6in} \\times \\frac{f_{interior}(r, \\theta , z)}{\\kappa_{r:\\theta}^2+\\kappa_z^2}"; } if(eqtype[2]==2) // spherical coords { AAA="A_{\\ell m}(\\kappa_{\\ell: r})"; nonhomf="\\frac{f_{interior}(\\theta, \\phi, {r})}{\\kappa_{\\ell: r}^2}"; } } } if(eqtype[0]==2) // s-plane diffusion { if(eqtype[1]==1) // 1 dim { AAA="A(\\kappa_x;s)"; if(eqtype[7]==0) nonhomf="\\frac{\\Psi(x,t=0)}{\\kappa_x^2+s}"; else nonhomf="\\left(\\frac{F_{interior}(x;s)+\\Psi(x,t=0)}{\\kappa_x^2+s}\\right)"; } if(eqtype[1]==2) // 2 dim { if(eqtype[2]==0) // Rect coords { AAA="A(\\kappa_x,\\kappa_y;s)"; if(eqtype[7]==1) nonhomf="\\left(\\frac{F_{interior}(x,y;s)+\\Psi(x,y,t=0)}{\\kappa_x^2+\\kappa_y^2+s}\\right)"; else nonhomf="\\frac{\\Psi(x,y,t=0)}{\\kappa_x^2+\\kappa_y^2+s}"; } if(eqtype[2]==1) // polar coords { AAA="A(\\kappa_r, \\kappa_{\\theta};s)"; if(eqtype[7]==1) nonhomf="\\left(\\frac{F_{interior}(r, \\theta;s)+\\Psi(r, \\theta, t=0)}{\\kappa_r^2+s}\\right)"; else nonhomf="\\frac{\\Psi(r, \\theta,t=0)}{\\kappa_r^2+s}\\right)"; } } if(eqtype[1]==3) // 3 dim { if(eqtype[2]==0) // Rect coords { AAA="A(\\kappa_x,\\kappa_y, \\kappa_z ;s)"; if(eqtype[7]==1) nonhomf="\\\\ \\hspace*{2.6in} \\times \\left(\\frac{F_{interior}(x,y,z ;s)+\\Psi(x,y,z,t=0)}{\\kappa_x^2+\\kappa_y^2+\\kappa_z^2+s}\\right)"; else nonhomf="\\\\ \\hspace*{2.6in} \\times \\frac{\\Psi(x,y,z,t=0)}{\\kappa_x^2+\\kappa_y^2+\\kappa_z^2+s}"; } if(eqtype[2]==1) // cylindrical coords { AAA="A(\\kappa_{r:\\theta},\\kappa_{\\theta}, \\kappa_z ;s)"; if(eqtype[7]==1) nonhomf="\\\\ \\hspace*{2.6in} \\times \\left(\\frac{F_{interior}(r, \\theta , z ;s)+\\Psi(r, \\theta , z ,t=0)}{\\kappa_{r:\\theta}^2+\\kappa_z^2+s}\\right)"; else nonhomf="\\\\ \\hspace*{2.6in} \\times \\frac{\\Psi(r, \\theta , z ,t=0)}{\\kappa_{r:\\theta}^2+\\kappa_z^2+s}"; } if(eqtype[2]==2) // spherical coords { AAA="A_{\\ell m}(\\kappa_{\\ell: r} ;s)"; if(eqtype[7]==1) nonhomf="\\\\ \\hspace*{2.6in} \\times \\left(\\frac{F_{interior}(\\theta, \\phi, {r};s)+\\Psi(\\theta, \\phi, {r},t=0)}{\\kappa_{\\ell: r}^2+s}\\right)"; else nonhomf="\\frac{\\Psi(\\theta, \\phi, {r},t=0)}{\\kappa_{\\ell: r}^2+s}"; } } } if(eqtype[0]==4) // s-plane wave { if(eqtype[1]==1) // 1 dim { AAA="A(\\kappa_x;s)"; if(eqtype[7]==1) nonhomf="\\\\ \\hspace*{2.6in} \\times \\left(\\frac{F_{interior}(x;s)+\\Psi(x,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(x,t=0)}{\\kappa_x^2+s^2}\\right)"; else nonhomf="\\\\ \\hspace*{2.6in} \\times \\frac{\\Psi(x,t=0)+s\\frac{\\partial \\Psi}{\\partial t}(x,t=0)}{\\kappa_x^2+s^2}"; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -