⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 usfkad6_05.cpp

📁 Solutions are obtained for Poissson, diffusion, or wave PDEs homogeneous or nonhomogeneous equations
💻 CPP
📖 第 1 页 / 共 5 页
字号:
	{		term = term+1;	}	if((mtrx[t][6]=="N"))  //(t != 4)&& omitted	{		term = term+1;	}   } //   In case there's no steady state term.   if (term==0)   {	   outFilE << 0 << "\\\\ ";   }   else   {   for(i=1; i<term; i++)   {	   itoa (i,sterm, 10);	   outFilE << "\\Psi_" << i <<  "+";   }itoa (term,sterm, 10);outFilE << "\\Psi_" << term << "\\\\ ";   }if(eqtype[0]==3){	outFilE << "\\Psi_{transient}=\\Psi_{transient \\, \\#1}+\\Psi_{transient \\, \\#2}" << "\\\\";}else{	outFilE << "\\\\" ;}// Finished first line of output *******************************************   /* set the number of terms counter to 0 */term=0;/* Look for low end, high end nonhomogeneities*/for(lowhigh=1; lowhigh<3; lowhigh++)       {	   if(lowhigh==1)  // low end	     {           lohiint = 2;		   lohisym = "NH";		   p=8;	   }		if(lowhigh==2)  // high end	     {           lohiint = 6;		   lohisym = "HN";		   p = 9;		}for(i=1;i<dim+1;i++) // i loops through dim {  /* identify the coordinate row r(i)*/  r=eqtype[2+i];  if (mtrx[r][lohiint]=="N")  //Is row(i) nonhomog?  {	  term=term+1;       itoa(term, sterm,10);	  outFilE << "\n \\\\ \\\\ \\\\ \\\\ \\Psi_" << term << "=";	  // Re-initialize the output stringsSymb1="";Symb2="=";Eigans1="";Nonans1="\\; ";Eigans2="\n \\\\ where";// Nonans2="\n\\\\ ";Nonans2="\\\\ ";Eigans53="";Nonans3="\\; ";Eigans4="\n\\\\ ";Nonans4="\\\\ ";  // ith coord, in row r, is nonhomog; Call the eigenfunctions  for (k=1;k<dim+1;k++)    {     if (k!=i) // k loops through the homog rows       {        re=eqtype[k+2];         // re(k) is the row number for the current eigenfunction//   Change to Caucy-Euler equation if 2D and steadystate/*		if (re==5 && eqtype[1]==2 && (eqtype[0]==0 || eqtype[0] == 1 || eqtype[0] == 3))		{			re=4;		}                   */				f4 = mtrx[re][5];		if (f4=="I" || f4=="O")		{			f4="S";		}				f=mtrx[re][3] + mtrx[re][1] + f4 + "HH";        A.ans1 = f;        A.ans2 = mtrx[re][7];        A.ans3 = mtrx[re][9];        A.symb1 = "" ;        A.symb2 = "" ;         /* assemble the answer for this condition */		//   Debug/*		  cout<<f<<"\n";  cout<<r<<"\n";  cout<<lohisym<<"\n";*/		A=sul(A,r);				Symb1 += A.symb1;		Symb2 += A.symb2;		Eigans1 += A.ans1;		Eigans2 += "\\\\ \n" + A.ans2;		Eigans53 += "\\;" + A.ans5 + "\\;" + A.ans3;		Eigans4 += A.ans4 + "\\\\";	// That builds the answer string for this factor.       }     }  // Insert the nonhomogeneous factor for variable i//   Change to Caucy-Euler equation if 2D and steadystate/*		if (r==5 && eqtype[1]==2 && (eqtype[0]==0 || eqtype[0] == 1 || eqtype[0] == 3))		{			r=4;		}              */				A=KandF(A,mtrx[r][p], r); // (A, nonhomo variable, its symbol); KandF packs KAPPA, AAA, & nonhomfcn/*		if (mtrx[r][5]=="O")  // Modify for outgoing.		{			A=KandF(A,"O", r);		}		if (mtrx[r][5]=="I")  // Modify for incoming.		{			A=KandF(A,"I", r);		}*/   nf=mtrx[r][3] + mtrx[r][1]+ mtrx[r][5] + lohisym;  A.ans1 = nf;  A.ans2= mtrx[r][7];  A.ans3 = mtrx[r][9];  // Debug/*  cout<<nf<<"\n";  cout<<r<<"\n";  cout<<lohisym<<"\n";  */  A = sul(A,r);  //  Add the nonhomogeneous factor stringsNonans1+=A.ans1;Nonans2 += A.ans2;Nonans3 += A.ans3;Nonans4+=A.ans4; //   Write to outfileoutFilE << Symb1 << Eigans1 << Nonans1 << "\\;" << A.AAA << Eigans2 << Nonans2 << "\\\\";outFilE << A.AAA << Symb2 << Eigans53 <<  Nonans3 << "\\;" << A.nonhomf << Eigans4 << Nonans4;  }  // End "i nonhomo"}   // End i = 1 to dim        }  //  End lowhigh loop//    Clear "r"/*  r=100;  *///  Append Green's function termif(eqtype[7]==1 || eqtype[0]==2 || eqtype[0]==4){	A=Green(A,term);// Green writes to outfile}// Append transient termsif(eqtype[0]==1)  // Diffusion{	t=0;	A=Trans(A,t);}if(eqtype[0]==3)  //  Wave{	t=1;	A=Trans(A,t);}// Trans writes to outfileoutFilE << "$\n\\end{document}";outFilE.close();cout << "DONE\n";}	pdeans Green(pdeans A, int term)//pdeans Green(pdeans A, std::string sterm)// Assembles and writes Green's function term to the outfile{std::string KAPPA, nonhomf, AAA, f, f4;std::string Symb1, Symb2, Eigans1, Nonans1, Eigans2, Nonans2, Eigans53, Nonans3, Eigans4, Nonans4;term = term+1;outFilE << "\n  \\\\ \\\\ \\\\ \\Psi_{" << term << "} = ";int k, re;// Re-initialize the output stringsSymb1="";Symb2="=";Eigans1="";Eigans2="\n\\\\where";Eigans53="";Eigans4="\n\\\\";  for (k=1;k<eqtype[1]+1;k++)    {        re=eqtype[k+2];         // re(k) is the row number for the current eigenfunction		f4 = mtrx[re][5];		if (f4=="I" || f4=="O")		{			f4="S";		}				f=mtrx[re][3] + mtrx[re][1] + f4 + "HH";		        A.ans1 = f;        A.ans2 = mtrx[re][7];        A.ans3 = mtrx[re][9];        A.symb1 = "" ;        A.symb2 = "" ;         /* assemble the answer for this condition */				A=sul(A,2); // r=2 to give correct Bessel function		Symb1 += A.symb1;		Symb2 += A.symb2;		Eigans1 += A.ans1;		Eigans2 += "\\\\ \n" + A.ans2;		Eigans53 += "\\;" + A.ans5 + "\\;" + A.ans3;		Eigans4 += A.ans4 + "\\\\";	// That builds the answer string for this factor.	}// Build nonhomfA = KAPPAGR(A);//   Write to outfileoutFilE << Symb1 << Eigans1 << "\\;" << A.AAA << Eigans2  << "\\\\" ;outFilE << A.AAA << Symb2 << Eigans53 << "\\;" << A.nonhomf << Eigans4 ; return A;}//  *********  KandF  ********pdeans KandF(pdeans C, std::string BC, int r)//  Puts the nonhomogeneous parameter string in KAPPA, the coeff in AAA, and the nonhomog function in nonhomf{std::string KAPPA, nonhomf, AAA;	if(eqtype[0]==0)   //  LaPlace	{		if(eqtype[1]==2)  //  2-D		{			if(r==0)  // x			{				KAPPA = "\\kappa_y";				AAA="A(\\kappa_y)";				nonhomf="f_{x=" + BC + "}(y)";			}			if(r==1)  // y			{				KAPPA = "\\kappa_x";				AAA="A(\\kappa_x)";				nonhomf="f_{y=" + BC + "}(x)";			}			if(r==3)   // theta			{				KAPPA = "\\kappa_r";				AAA="A(\\kappa_r)";				nonhomf="f_{\\theta=" + BC + "}(r)";			}			if(r==4) //   r 2_D			{				KAPPA = "\\kappa_{\\theta}";				AAA="A(\\kappa_{\\theta})";				nonhomf="f_{r=" + BC + "}(\\theta)";			}		}		if(eqtype[1]==3)   //  3_D		{			if(r==0)  // x			{				KAPPA="\\sqrt{\\kappa_y^2+\\kappa_z^2}";				AAA="A(\\kappa_y, \\, \\kappa_z)";				nonhomf="f_{x=" + BC + "}(y,z)";			}			if(r==1)  //y			{				KAPPA="\\sqrt{\\kappa_x^2+\\kappa_z^2}";				AAA="A(\\kappa_x, \\, \\kappa_z)";				nonhomf="f_{y=" + BC + "}(x,z)";			}			if(r==2)  //z			{				if(eqtype[2]==0)  // rect				{					KAPPA="\\sqrt{\\kappa_x^2+\\kappa_y^2}";					AAA="A(\\kappa_x, \\, \\kappa_y)";					nonhomf="f_{z=" + BC + "}(x,y)";				}				if(eqtype[2]==1)  // cyl				{					KAPPA="\\kappa_{r:\\theta}";					AAA = "A(\\kappa_{\\theta},\\kappa_{r:\\theta})";					nonhomf="f_{z=" + BC + "}(\\theta,r)";				}			}			if(r==3)   // theta			{				KAPPA="\\kappa_{r:z}";				AAA = "A(\\kappa_z,\\kappa_{r:z})";				nonhomf="f_{\\theta=" + BC + "}(z,r)";			}			if(r==5)    //  rho			{				KAPPA = "\\kappa_{\\theta},\\kappa_z";  //  not used				AAA = "A(\\kappa_{\\theta},\\kappa_z)";				nonhomf="f_{r=" + BC + "}(\\theta, z)";			}			if(r==6)   // r 3-D			{				KAPPA = "\\ell m";   // not used				AAA="A_{\\ell m}";				nonhomf="f_{r=" + BC + "}(\\theta,\\phi)";			}		}	}	if(eqtype[0]==1)   //  diffusion, time	{		if(eqtype[1]==2)  // 2_D  (1-D is special)			{			if(r==0)  //x			{				KAPPA = "\\kappa_y";				AAA="A(\\kappa_y)";				nonhomf="f_{x=" + BC + "}(y)";			}			if(r==1)  //y			{				KAPPA = "\\kappa_x";				AAA="A(\\kappa_x)";				nonhomf="f_{y=" + BC + "}(x)";			}			if(r==3)  // theta			{				KAPPA = "\\kappa_{r}";				AAA="A(\\kappa_{r})";				nonhomf="f_{\\theta=" + BC + "}(r)";			}			if(r==4)  // r 2-D   			{				KAPPA = "\\kappa_{\\theta}";				AAA="A(\\kappa_{\\theta})";				nonhomf="f_{r=" + BC + "}(\\theta)";			}		}		if(eqtype[1]==3)   //  3-D		{			if(r==0)    // x			{				KAPPA="\\sqrt{\\kappa_y^2+\\kappa_z^2}";				AAA="A(\\kappa_y, \\, \\kappa_z)";				nonhomf="f_{x=" + BC + "}(y,z)";			}			if(r==1)  // y			{				KAPPA="\\sqrt{\\kappa_x^2+\\kappa_z^2}";				AAA="A(\\kappa_x, \\, \\kappa_z)";				nonhomf="f_{y=" + BC + "}(x,z)";			}			if(r==2)  // z			{				if(eqtype[2]==0)  // rect				{					KAPPA="\\sqrt{\\kappa_x^2+\\kappa_y^2}";					AAA="A(\\kappa_x, \\, \\kappa_y)";					nonhomf="f_{z=" + BC + "}(x,y)";				}				if(eqtype[2]==1)   // cyl				{					KAPPA="\\kappa_{r:\\theta}";					AAA = "A(\\kappa_{\\theta},\\kappa_{r:\\theta})";					nonhomf="f_{z=" + BC + "}(\\theta,r)";				}			}			if(r==3)  // theta			{				KAPPA="\\kappa_{r:z}";				AAA = "A(\\kappa_z,\\kappa_{r:z})";				nonhomf="f_{\\theta=" + BC + "}(z,r)";			}			if(r==5)   //  rho			{				KAPPA="\\kappa_z";				AAA = "A(\\kappa_{\\theta},\\kappa_z)";				nonhomf="f_{r=" + BC + "}(\\theta, z)";			}			if(r==6)   //  r 3-D			{				KAPPA = "\\ell m";   // not used				AAA="A_{\\ell m}";				nonhomf="f_{r=" + BC + "}(\\theta,\\phi)";			}		}	}	if(eqtype[0]==2)    //diffusion, s plane	{		if(eqtype[1]==1)   // 1-D			{				KAPPA="\\sqrt{s}";				AAA="A(s)";				nonhomf="F_{x=" + BC + "}(s)";			}						if(eqtype[1]==2)   // 2-D		{			if(r==0)   // x			{				KAPPA="\\sqrt{\\kappa_y^2+s}";				AAA="A(s;\\kappa_y)";				nonhomf="F_{x=" + BC + "}(s;y)";			}			if(r==1)   //y			{				KAPPA="\\sqrt{\\kappa_x^2+s}";				AAA="A(s;\\kappa_x)";				nonhomf="F_{y=" + BC + "}(s;x)";			}			if(r==3)  // theta   			{				KAPPA = "\\sqrt{\\kappa_r^2+s}";				AAA="A(s;\\kappa_r)";				nonhomf="f_{\\theta=" + BC + "}(s;r)";			}			if(r==4)  // r 2-D   			{				KAPPA = "\\sqrt{s}";				AAA="A(s;\\kappa_{\\theta})";				nonhomf="f_{r=" + BC + "}(s;\\theta)";			}  //**************???????????????		}		if(eqtype[1]==3)   // 3-D		{			if(r==0)   // x			{				KAPPA="\\sqrt{\\kappa_y^2+\\kappa_z^2+s}";				AAA="A(s;\\kappa_y,\\kappa_z)";				nonhomf="F_{x=" + BC + "}(s;y,z)";			}			if(r==1)   // y			{				KAPPA="\\sqrt{\\kappa_x^2+\\kappa_z^2+s}";				AAA="A(s;\\kappa_x,\\kappa_z)";				nonhomf="F_{y=" + BC + "}(s;x,z)";			}			if(r==2)   // z			{			if(eqtype[2]==0)   // rect				{				KAPPA="\\sqrt{\\kappa_x^2+\\kappa_y^2+s}";				AAA="A(s;\\kappa_x,\\kappa_y)";				nonhomf="F_{z=" + BC + "}(s;x,y)";				}			if(eqtype[2]==1)   // cyl				{				KAPPA="\\sqrt{\\kappa_{r : \\theta}^2+s}";

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -