⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 deter.txt

📁 小波滤波器消噪程序小波滤波器消噪程序小波滤波器消噪程序小波滤波器消噪程序
💻 TXT
字号:
% mallet_wavelet.m

% 此函数用于研究Mallet算法及滤波器设计

% 此函数用于消噪处理

%角度赋值

%此处赋值使滤波器系数恰为db9

%分解的高频系数采用db9较好,即它的消失矩较大

%分解的有用信号小波高频系数基本趋于零

%对于噪声信号高频分解系数很大,便于阈值消噪处理

[l,h]=wfilters('db10','d');

low_construct=l;

L_fre=20; %滤波器长度

low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器

for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器

if(mod(i_high,2)==0);

coefficient=-1;

else

coefficient=1;

end

high_construct(1,i_high)=low_decompose(1,i_high)*coefficient;

end

high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)

L_signal=100; %信号长度

n=1:L_signal; %原始信号赋值

f=10;

t=0.001;

y=10*cos(2*pi*50*n*t).*exp(-30*n*t);

zero1=zeros(1,60); %信号加噪声信号产生

zero2=zeros(1,30);

noise=[zero1,3*(randn(1,10)-0.5),zero2];

y_noise=y+noise;

figure(1);

subplot(2,1,1);

plot(y);

title('原信号');

subplot(2,1,2);

plot(y_noise);

title('受噪声污染的信号');

check1=sum(high_decompose); %h0(n),性质校验

check2=sum(low_decompose);

check3=norm(high_decompose);

check4=norm(low_decompose);

l_fre=conv(y_noise,low_decompose); %卷积

l_fre_down=dyaddown(l_fre); %抽取,得低频细节

h_fre=conv(y_noise,high_decompose);

h_fre_down=dyaddown(h_fre); %信号高频细节

figure(2);

subplot(2,1,1)

plot(l_fre_down);

title('小波分解的低频系数');

subplot(2,1,2);

plot(h_fre_down);

title('小波分解的高频系数');

% 消噪处理

for i_decrease=31:44;

if abs(h_fre_down(1,i_decrease))>=0.000001

h_fre_down(1,i_decrease)=(10^-7);

end

end

l_fre_pull=dyadup(l_fre_down); %0差值

h_fre_pull=dyadup(h_fre_down);

l_fre_denoise=conv(low_construct,l_fre_pull);

h_fre_denoise=conv(high_construct,h_fre_pull);

l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响

h_fre_keep=wkeep(h_fre_denoise,L_signal);

sig_denoise=l_fre_keep+h_fre_keep; %消噪后信号重构

%平滑处理

for j=1:2

for i=60:70;

sig_denoise(i)=sig_denoise(i-2)+sig_denoise(i+2)/2;

end;

end;

compare=sig_denoise-y; %与原信号比较

figure(3);

subplot(3,1,1)

plot(y);

ylabel('y'); %原信号

subplot(3,1,2);

plot(sig_denoise);

ylabel('sig\_denoise'); %消噪后信号

subplot(3,1,3);

plot(compare);

ylabel('compare'); %原信号与消噪后信号的比较 
[ 本帖最后由 simon21 于 2007-4-4 07:04 编辑 ]
 
  
 
   
 
 
 
  
 
simon21  


  新科状元 
 
   
  精华: 5 
 积分: 405
 帖子: 713
 威望: 324 点
 振动币: 1202 个
 阅读权限: 80
 注册: 2005-7-24
 
 
 
 


  #6插入书签  大 中 小 
发表于 2006-3-31 08:46  资料  个人空间  短消息  加为好友   
小波谱分析mallat算法经典程序




[Copy to clipboard] [ - ]CODE:
clc;clear;
%% 1.正弦波定义
f1=50; % 频率1
f2=100; % 频率2
fs=2*(f1+f2); % 采样频率
Ts=1/fs; % 采样间隔
N=120; % 采样点数
n=1:N;
y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合
figure(1)
plot(y);
title('两个正弦信号')
figure(2)
stem(abs(fft(y)));
title('两信号频谱')
%% 2.小波滤波器谱分析
h=wfilters('db30','l'); % 低通
g=wfilters('db30','h'); % 高通
h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察)
g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察)
figure(3);
stem(abs(fft(h)));
title('低通滤波器图')
figure(4);
stem(abs(fft(g)));
title('高通滤波器图')
%% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现)
sig1=ifft(fft(y).*fft(h)); % 低通(低频分量)
sig2=ifft(fft(y).*fft(g)); % 高通(高频分量)
figure(5); % 信号图
subplot(2,1,1)
plot(real(sig1));
title('分解信号1')
subplot(2,1,2)
plot(real(sig2));
title('分解信号2')
figure(6); % 频谱图
subplot(2,1,1)
stem(abs(fft(sig1)));
title('分解信号1频谱')
subplot(2,1,2)
stem(abs(fft(sig2)));
title('分解信号2频谱')
%% 4.MALLET重构算法
sig1=dyaddown(sig1); % 2抽取
sig2=dyaddown(sig2); % 2抽取
sig1=dyadup(sig1); % 2插值
sig2=dyadup(sig2); % 2插值
sig1=sig1(1,[1:N]); % 去掉最后一个零
sig2=sig2(1,[1:N]); % 去掉最后一个零
hr=h(end:-1:1); % 重构低通
gr=g(end:-1:1); % 重构高通
hr=circshift(hr',1)'; % 位置调整圆周右移一位
gr=circshift(gr',1)'; % 位置调整圆周右移一位
sig1=ifft(fft(hr).*fft(sig1)); % 低频
sig2=ifft(fft(gr).*fft(sig2)); % 高频
sig=sig1+sig2; % 源信号
%% 5.比较
figure(7);
subplot(2,1,1)
plot(real(sig1));
title('重构低频信号');
subplot(2,1,2)
plot(real(sig2));
title('重构高频信号');
figure(8);
subplot(2,1,1)
stem(abs(fft(sig1)));
title('重构低频信号频谱');
subplot(2,1,2)
stem(abs(fft(sig2)));
title('重构高频信号频谱');
figure(9)
plot(real(sig),'r','linewidth',2);
hold on;
plot(y);
legend('重构信号','原始信号')
title('重构信号与原始信号比较')  
 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -