📄 gettrainingdata.m
字号:
clear all
close all
clc
% number of images on your training set.
M=300;
%Chosen std and mean.
%It can be any number that it is close to the std and mean of most of the images.
um=100;%for '1.bmp',the 'um' is 100.1504.//tropic zhang 4/14
ustd=80;%for '1.bmp',the 'ustd' is 79.7198.//tropic zhang 4/14
%read and show images(bmp);
S=[]; %img matrix
%figure(1);
for i=1:M
str=strcat(int2str(i),'.bmp'); %concatenates two strings that form the name of the image
str=strcat('F:\zgq\work\sampleface\',str);
eval('img=imread(str);');
%subplot(ceil(sqrt(M)),ceil(sqrt(M)),i)
%imshow(img);
%str=int2str(i);// 4.6,tropic zhang.
%title(i,'fontsize',12)
%if i==2
% title('Training set','fontsize',18)
%end
%drawnow;
[irow icol]=size(img); % get the number of rows (N1) and columns (N2)
temp=reshape(img',irow*icol,1); %creates a (N1*N2)x1 matrix;img' mean doing in rows.
S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence
%this is our S
end
%Here we change the mean and std of all images. We normalize all images.
%This is done to reduce the error due to lighting conditions.
for i=1:size(S,2)
temp=double(S(:,i));
m=mean(temp);
st=std(temp);
S(:,i)=(temp-m)*ustd/st+um;
end
%show normalized images
%figure(2);
%for i=1:M
% str=strcat(int2str(i),'.bmp');
% img=reshape(S(:,i),icol,irow);
% img=img';
% eval('imwrite(img,str)');
% subplot(ceil(sqrt(M)),ceil(sqrt(M)),i)
% imshow(img)
% drawnow;
% if i==2
% title('Normalized Training Set','fontsize',18)
% end
%end
%mean image;
m=mean(S,2); %obtains the mean of each row instead of each column
tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255
img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix
img=img'; %creates a N1xN2 matrix by transposing the image.
%figure(3);
%imshow(img);
%title('Mean Image','fontsize',18)
% Change image for manipulation
dbx=[]; % A matrix
for i=1:M
temp=double(S(:,i));
dbx=[dbx temp];
end
%Covariance matrix C=A'A, L=AA'
A=dbx';
L=A*A';
% vv are the eigenvector for L
% dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx';
[vv dd]=eig(L);
% Sort and eliminate those whose eigenvalue is zero
v=[];
d=[];
for i=1:size(vv,2)
if(dd(i,i)>1e-4) %[dd] is a 正对角矩阵//4.6 tropic zhang.
v=[v vv(:,i)];
d=[d dd(i,i)]; %[d] is row行向量//4.6 tropic zhang.
end
end
%sort, will return an ascending sequence
[B index]=sort(d);%B return an ascending sequence;index is the position of new numder in original row.//4.6 tropic
ind=zeros(size(index));%also the size of [d];a row//4.6 tropic zhang.
dtemp=zeros(size(index));%also the size of [d];a row //4.6 tropic zhang.
vtemp=zeros(size(v));%a matrix
len=length(index);
%????change the order of d and v into an descending sequence.//4.6 tropic.
for i=1:len
dtemp(i)=B(len+1-i);
ind(i)=len+1-index(i);
vtemp(:,ind(i))=v(:,i);
end
d=dtemp;
v=vtemp;
%Normalization of eigenvectors
for i=1:size(v,2) %access each column
kk=v(:,i);
temp=sqrt(sum(kk.^2));
v(:,i)=v(:,i)./temp;
end
%Eigenvectors of C matrix
u=[];
for i=1:size(v,2)
temp=sqrt(d(i));
u=[u (dbx*v(:,i))./temp];
end
%Normalization of eigenvectors
for i=1:size(u,2)
kk=u(:,i);
temp=sqrt(sum(kk.^2));
u(:,i)=u(:,i)./temp;
end
% show eigenfaces;
%figure(4);
%for i=1:size(u,2)
% img=reshape(u(:,i),icol,irow);
% img=img';
% img=histeq(img,255);
% subplot(ceil(sqrt(M)),ceil(sqrt(M)),i)
% imshow(img)
% drawnow;
% if i==2
% title('Eigenfaces','fontsize',18)
% end
%end
% Find the weight of each face in the training set.
omega = [];
for h=1:size(dbx,2)
WW=[];
for i=1:size(u,2)
t = u(:,i)';
WeightOfImage = dot(t,dbx(:,h)');
WW = [WW; WeightOfImage];
end
omega = [omega WW];
end
%%%---save the data of training procession
save train irow icol ustd um m u M omega
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -