📄 annzuoye.m
字号:
a=[ 90 25 30 0;
100 40 50 0;
200 60 70 20;
300 120 60 10;
400 77 31 0;
500 100 50 10;
800 280 140 70;
900 220 60 20;
1000 540 180 165;
1200 300 60 40;
1400 340 100 60;
1600 660 100 220;
1800 900 180 180;
2000 500 100 60]'
t=[0.01 0.01 0.01 0.01 0.99 0.99 0.01 0.99 0.01 0.99 0.99 0.01 0.01 0.99];
%输入输出原值
b=zeros(1,size(a,2));
for i=1:size(a,1)
b=b+a(i,:);
end
for j=1:size(b,2)
b(j)=b(j)/size(a,1);
end
%b 为平均值
for i=1:size(a,1)
for j=1:size(a,2)
a(i,j)= (a(i,j)-b(j))/b(j);
%收入处理 归一化(0,1)之间
end
end
net=newff(minmax(a),[6,1],{'logsig','purelin'},'traingdx');
net.trainParam.show=200;%指定算法每个执行表达的训练次数
net.trainParam.lr=0.01;
net.trainParam.epochs=30000;
net.trainParam.goal=0.00001;
net.trainParam.mc=0.59;
net=train(net,a,t);
PP =[600 120 40 20;
700 160 60 20]' ;
ppp=zeros(1,size(PP,2));
for i=1:size(PP,1)
ppp=ppp+PP(i,:);
end
for j=1:size(ppp,2)
ppp(j)=ppp(j)/size(PP,1);
end
%b 为平均值
for i=1:size(PP,1)
for j=1:size(PP,2)
PP(i,j)= (PP(i,j)-ppp(j))/ppp(j);
%收入处理
end
end
y=sim(net,PP)
output = y
weights11 = net.iw{1,1}
weights = net.lw{2,1}
threshold = net.b{1}
threshold = net.b{2}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -