📄 denoise_kpca.m
字号:
function [Xd,lam,U] = denoise_kpca(Xo,A1,A2,A3,A4,A5)% Reconstruct the data mapped on the first principal components% % >> Xd = denoise_kpca(X, kernel, kernel_par);% % Denoising can be done by moving the point in inputspace so that% its corresponding map to feature space is optimized. This means% that the data point in feature space is as close as possible with% its corresponding reconstructed points using the principal% components. If the principal components are to be calculated on% the same data X as the one one wants to denoise, use the command:% % >> Xd = denoise_kpca(X, kernel, kernel_par);% >> [Xd,lam,U] = denoise_kpca(X, kernel, kernel_par, [], type, nb);% % When one wants to denoise data 'Xt' other than the data used to obtain the principal components:% % >> Xd = denoise_kpca(X, kernel, kernel_par, Xt);% >> [Xd, lam, U] = denoise_kpca(X, kernel, kernel_par, Xt, type, nb);% %% Full syntax% % >> [Xd, lam, U] = denoise_kpca(X, kernel, kernel_par, Xt);% >> [Xd, lam, U] = denoise_kpca(X, kernel, kernel_par, Xt, type);% % Outputs % Xd : N x d (Nt x d) matrix with denoised data X (Xt)% lam(*) : nb x 1 vector with eigenvalues of principal components% U(*) : N x nb (Nt x d) matrix with principal eigenvectors% Inputs % X : N x d matrix with data points used for finding the principal components% kernel : Kernel type (e.g. 'RBF_kernel')% kernel_par : Kernel parameter (bandwidth in the case of the 'RBF_kernel')% Xt(*) : Nt x d matrix with the points to denoise (if not specified, X is denoised instead)% type(*) : 'eig'(*), 'svd', 'eigs', 'eign'% nb(*) : Number of principal components used in approximation% % >> Xd = denoise_kpca(X, U, lam, kernel, kernel_par, Xt);% % Outputs % Xd : N x d (Nt x d) matrix with denoised data X (Xt)% Inputs % X : N x d matrix with data points used for finding the principal components% U : N x nb (Nt x d) matrix with principal eigenvectors% lam : nb x 1 vector with eigenvalues of principal components% kernel : Kernel type (e.g. 'RBF_kernel')% kernel_par : Kernel parameter (bandwidth in the case of the 'RBF_kernel')% Xt(*) : Nt x d matrix with the points to denoise (if not specified, X is denoised instead)% % See also:% kpca, kernel_matrix, RBF_kernel% Copyright (c) 2002, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlabif ~exist('fminunc'), error('This function needs the optimization function ''fminunc''.');end if isstr(A1), kernel = A1; par = A2; eval('if isempty(Xt), Xt = A3; end','Xt = Xo;'); eval('etype = A4;','etype = ''svd'';'); eval('nb = A5;','nb = ''inf'';'); [lam,U] = kpca(Xo,kernel,par); [lam,U] = kpca(Xo,kernel,par,[], etype, nb);else U = A1; lam = A2; kernel = A3; par = A4; eval('Xt = A5;','Xt = Xo;');endwarning off[nb,d] = size(Xt);for n=1:nb, x = Xt(n,:); %dist_phi(x,x,kernel,par,U,lam,Xo) Xd(n,:) = fminunc(@dist_phi,x,[],x,kernel,par,U,lam,Xo);endwarning onfunction d = dist_phi(x,xor,kernel,par,U,lam,Xo)% the distance in feature space between x and the subspace spanned% by U,lamk = kernel_matrix(Xo,kernel,par,[x;xor]);betas = k(:,1)'*U;alphas = k(:,2)'*U;d = feval(kernel,x,x,par)-2*betas*alphas';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -