📄 rbf_kernel.m
字号:
function x = RBF_kernel(a,b, sigma2)% Radial Basis Function (RBF) kernel function for implicit higher dimension mapping%% X = RBF_kernel(a,b,sig2)%% 'sig2' contains the SQUARED variance of the RBF function:% X = exp(-||a-b||.^2/sig2)% % 'a' can only contain one datapoint in a row, 'b' can contain N% datapoints of the same dimension as 'a'. If the row-vector 'sig2'% contains i=1 to 'dimension' values, each dimension i has a separate 'sig2(i)'.%% see also:% poly_kernel, lin_kernel, MLP_kernel, trainlssvm, simlssvm% Copyright (c) 2002, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlabx = zeros(size(b,1),1);% ARD for different dimensions.if size(sigma2,2) == length(a), % rescaling ~ dimensionality [n,d] = size(b); for i=1:size(b,1), dif = a-b(i,:); x(i,1) = exp( -(sum((dif.*dif)./(sigma2.*d))) ); endelse % a single kernel parameter or one for every inputvariable for i=1:size(b,1), dif = a-b(i,:); x(i,1) = exp( -(sum((dif.*dif)./sigma2(1,1))) ); endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -