📄 ga_ini.m
字号:
% Initialise Parameters for tree_ga v2.0, then call tree_ga
%
% Author Date Predecessor Modification
% ====== ==== =========== ============
% B.McKay M.Willis 18/5/95 tree_ga.m Extracted from tree_ga
% 7/8/95 ga_ini.m Include permutation probability
% Function Calls: tree_ga2.m
% ===============
%
% Last Modification: 7/8/95
% =================
%
% Population Size
%
%pop_size=25;
%
% Number of Generations
%
%num_gen=50;
%--------------------------------------------------------------
% Equation Generation
%--------------------------------------------------------------
% p_sub_tree: probability of a sub tree
% p_const: probability of a constant
% Note: Probability of an input = 1 - p_sub_tree - p_const
%
% s_length: Number of sub trees concatenated in equ-gen
%
p_sub_tree=0.5;
p_const=0.2;
s_length=8;
equ_par = [p_sub_tree p_const];
%--------------------------------------------------------------
% Least Squares Optimisation Options
%--------------------------------------------------------------
%options(1) = 1; % Display results
%options(5) = 1; % Gauss Newton
options(14) = 1000; % Maximum itterations
time_out = 30;
%--------------------------------------------------------------
% Reproduction
%--------------------------------------------------------------
% Generation Gap
% Proportion of old population included in new population
%p_old=0.1;
% Mutation, Cross Over and Permutation Probabilities
%p_mutate=0.25;
%p_cross=0.65;
%p_perm=0.10;
% Probability of converting a constant to an input during mutation
% equal to P(converting an input to a constant during mutation)
p_c2u = 0.1;
%--------------------------------------------------------------
% Fitness Function
%--------------------------------------------------------------
% Choice of Fitness Function
ffunc = 'ccf';
%ffunc = 'mse';
% Set string length penalty cut off
snip_length=200;
%--------------------------------------------------------------
% Displaying Results, Saving and Reinitialising
%--------------------------------------------------------------
% Display frequency
presults=1;
% Simplify displayed solutions
simp_disp=0; % [1=ON, 0=OFF]
% Save best solution, and write to file
dump_num = 10;
% Re-initialise population from best solution at given generation interval
rein_num = num_gen+1;
%--------------------------------------------------------------
% Basic Set of Functionals
%--------------------------------------------------------------
% Number of Arguments and Function Identifier
% num_fun_arg(1)=2; fun_name(1)='^'; % ^
% num_fun_arg(2)=2; fun_name(2)='*'; % *
% num_fun_arg(3)=2; fun_name(3)='-'; % -
% num_fun_arg(4)=2; fun_name(4)='+'; % +
% num_fun_arg(5)=2; fun_name(5)='/'; % /
% num_fun_arg(6)=1; fun_name(6)='r'; % sqrt
% num_fun_arg(7)=1; fun_name(7)='l'; % log
% num_fun_arg(8)=1; fun_name(8)='s'; % ^2
% num_fun_arg(9)=1; fun_name(9)='p'; % exp
%--------------------------------------------------------------
% User Defined Functions (UDF's)
%--------------------------------------------------------------
% Function Socket Types
% <1> = Constant Only
% <2> = Input Only
% <3> = Sub Tree
%--------------------------------------------------------------
% Arrhenius Type Function
%num_fun_arg(10)=2; fun_name(10)='1';
user_def_fun='{7.2e9*<3>*p(9.5e3/u3)*<3>}';
% Residence Time
%num_fun_arg(11)=2; fun_name(11)='2';
user_def_fun=str2mat(user_def_fun,'{1000*<3>/u1*<3>}');
% Remember to set up function weightings for each UDF
%--------------------------------------------------------------
% Functional Weightings for Initial Population Generation
%--------------------------------------------------------------
% Basic Set of Functionals
%fun_wgt(1)=2; % ^
%fun_wgt(2)=3; % *
%fun_wgt(3)=3; % -
%fun_wgt(4)=3; % +
%fun_wgt(5)=3; % /
%fun_wgt(6)=1; % sqrt
%fun_wgt(7)=1; % log
%fun_wgt(8)=1; % ^2
%fun_wgt(9)=1; % exp
% User Defined Functions
%fun_wgt(10)=0; % Arrhenius type function
%fun_wgt(11)=0; % Residence Time
%fun_wgt(12)=1; % Test function 2
%fun_wgt(13)=1; % Test function 3
%--------------------------------------------------------------
% Functional Weightings for Mutation
%--------------------------------------------------------------
% Basic Set of Functionals
%mut_fun_wgt(1)=2; % ^
%mut_fun_wgt(2)=3; % *
%mut_fun_wgt(3)=3; % -
%mut_fun_wgt(4)=3; % +
%mut_fun_wgt(5)=3; % /
%mut_fun_wgt(6)=1; % sqrt
%mut_fun_wgt(7)=1; % log
%mut_fun_wgt(8)=1; % ^2
%mut_fun_wgt(9)=1; % exp
% User Defined Functions
%mut_fun_wgt(10)=0; % Arrhenius type function
%mut_fun_wgt(11)=0; % Residence Time
%mut_fun_wgt(11)=1; % Test function 1
%mut_fun_wgt(12)=1; % Test function 2
%mut_fun_wgt(13)=1; % Test function 3
%--------------------------------------------------------------
% Generate fun_set
for i=1:fun_wgt(1),
fun_set(i)=fun_name(1);num_fun_arg_set(i)=num_fun_arg(1);
end
fun_ind=fun_wgt(1);
for j=2:length(fun_wgt),
for i=fun_ind+1:fun_ind+fun_wgt(j),
fun_set(i)=fun_name(j);num_fun_arg_set(i)=num_fun_arg(j);
end;
fun_ind=fun_ind+fun_wgt(j);
end
%--------------------------------------------------------------
% Generate mut_fun_set
for i=1:mut_fun_wgt(1),
mut_fun_set(i)=fun_name(1);mut_num_fun_arg_set(i)=num_fun_arg(1);
end
fun_ind=mut_fun_wgt(1);
for j=2:length(mut_fun_wgt),
for i=fun_ind+1:fun_ind+mut_fun_wgt(j),
mut_fun_set(i)=fun_name(j);mut_num_fun_arg_set(i)=num_fun_arg(j);
end;
fun_ind=fun_ind+mut_fun_wgt(j);
end
%--------------------------------------------------------------
% Call tree_ga
%
tree_ga2
% End
%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -