📄 landzo
字号:
*/
typedef struct
{
int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
} arm_biquad_casd_df1_inst_q15;
/**
* @brief Instance structure for the Q31 Biquad cascade filter.
*/
typedef struct
{
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
} arm_biquad_casd_df1_inst_q31;
/**
* @brief Instance structure for the floating-point Biquad cascade filter.
*/
typedef struct
{
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_casd_df1_inst_f32;
/**
* @brief Processing function for the Q15 Biquad cascade filter.
* @param[in] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_q15(
const arm_biquad_casd_df1_inst_q15 *S,
q15_t *pSrc,
q15_t *pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 Biquad cascade filter.
* @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
* @return none
*/
void arm_biquad_cascade_df1_init_q15(
arm_biquad_casd_df1_inst_q15 *S,
uint8_t numStages,
q15_t *pCoeffs,
q15_t *pState,
int8_t postShift);
/**
* @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_fast_q15(
const arm_biquad_casd_df1_inst_q15 *S,
q15_t *pSrc,
q15_t *pDst,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 Biquad cascade filter
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_q31(
const arm_biquad_casd_df1_inst_q31 *S,
q31_t *pSrc,
q31_t *pDst,
uint32_t blockSize);
/**
* @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_fast_q31(
const arm_biquad_casd_df1_inst_q31 *S,
q31_t *pSrc,
q31_t *pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 Biquad cascade filter.
* @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
* @return none
*/
void arm_biquad_cascade_df1_init_q31(
arm_biquad_casd_df1_inst_q31 *S,
uint8_t numStages,
q31_t *pCoeffs,
q31_t *pState,
int8_t postShift);
/**
* @brief Processing function for the floating-point Biquad cascade filter.
* @param[in] *S points to an instance of the floating-point Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df1_f32(
const arm_biquad_casd_df1_inst_f32 *S,
float32_t *pSrc,
float32_t *pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point Biquad cascade filter.
* @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @return none
*/
void arm_biquad_cascade_df1_init_f32(
arm_biquad_casd_df1_inst_f32 *S,
uint8_t numStages,
float32_t *pCoeffs,
float32_t *pState);
/**
* @brief Instance structure for the floating-point matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
float32_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_f32;
/**
* @brief Instance structure for the Q15 matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
q15_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_q15;
/**
* @brief Instance structure for the Q31 matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
q31_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_q31;
/**
* @brief Floating-point matrix addition.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_f32(
const arm_matrix_instance_f32 *pSrcA,
const arm_matrix_instance_f32 *pSrcB,
arm_matrix_instance_f32 *pDst);
/**
* @brief Q15 matrix addition.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_q15(
const arm_matrix_instance_q15 *pSrcA,
const arm_matrix_instance_q15 *pSrcB,
arm_matrix_instance_q15 *pDst);
/**
* @brief Q31 matrix addition.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_q31(
const arm_matrix_instance_q31 *pSrcA,
const arm_matrix_instance_q31 *pSrcB,
arm_matrix_instance_q31 *pDst);
/**
* @brief Floating-point matrix transpose.
* @param[in] *pSrc points to the input matrix
* @param[out] *pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_f32(
const arm_matrix_instance_f32 *pSrc,
arm_matrix_instance_f32 *pDst);
/**
* @brief Q15 matrix transpose.
* @param[in] *pSrc points to the input matrix
* @param[out] *pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_q15(
const arm_matrix_instance_q15 *pSrc,
arm_matrix_instance_q15 *pDst);
/**
* @brief Q31 matrix transpose.
* @param[in] *pSrc points to the input matrix
* @param[out] *pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_q31(
const arm_matrix_instance_q31 *pSrc,
arm_matrix_instance_q31 *pDst);
/**
* @brief Floating-point matrix multiplication
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_f32(
const arm_matrix_instance_f32 *pSrcA,
const arm_matrix_instance_f32 *pSrcB,
arm_matrix_instance_f32 *pDst);
/**
* @brief Q15 matrix multiplication
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_q15(
const arm_matrix_instance_q15 *pSrcA,
const arm_matrix_instance_q15 *pSrcB,
arm_matrix_instance_q15 *pDst,
q15_t *pState);
/**
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @param[in] *pState points to the array for storing intermediate results
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_fast_q15(
const arm_matrix_instance_q15 *pSrcA,
const arm_matrix_instance_q15 *pSrcB,
arm_matrix_instance_q15 *pDst,
q15_t *pState);
/**
* @brief Q31 matrix multiplication
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_q31(
const arm_matrix_instance_q31 *pSrcA,
const arm_matrix_instance_q31 *pSrcB,
arm_matrix_instance_q31 *pDst);
/**
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_fast_q31(
const arm_matrix_instance_q31 *pSrcA,
const arm_matrix_instance_q31 *pSrcB,
arm_matrix_instance_q31 *pDst);
/**
* @brief Floating-point matrix subtraction
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_f32(
const arm_matrix_instance_f32 *pSrcA,
const arm_matrix_instance_f32 *pSrcB,
arm_matrix_instance_f32 *pDst);
/**
* @brief Q15 matrix subtraction
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_q15(
const arm_matrix_instance_q15 *pSrcA,
const arm_matrix_instance_q15 *pSrcB,
arm_matrix_instance_q15 *pDst);
/**
* @brief Q31 matrix subtraction
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -