📄 ca.htm
字号:
<TD width="18%">1</TD>
<TD width="18%">0</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">1</TD></TR></TBODY></TABLE>
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">1</TD>
<TD width="18%">1</TD>
<TD width="32%">goes</TD>
<TD width="15%">1</TD>
<TD width="17%">1</TD></TR>
<TR>
<TD width="18%">1</TD>
<TD width="18%">1</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">1</TD></TR></TBODY></TABLE>
<P></P>
<LI>To make a particle collision (which conserves momentum and energy),
treat the case of exactly two particles on a diagonal as if they hit and
deflected each other 90 degrees. This is done by converting one diagonal to
the other on the time-step. You can implement this by rotating the 4 cells
counterclockwise by one cell. The third rule above becomes:
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">1</TD>
<TD width="18%">0</TD>
<TD width="32%">goes</TD>
<TD width="15%">0</TD>
<TD width="17%">1</TD></TR>
<TR>
<TD width="18%">0</TD>
<TD width="18%">1</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">0</TD></TR></TBODY></TABLE>
<P></P>
<LI>To make a particle collide with a wall, simply leave its state
unchanged. This causes a reflection.
<P></P></LI></UL>The update code: <BR><PRE> p=mod(i,2); %margolis neighborhood, where i is the time step
%upper left cell update
xind = [1+p:2:nx-2+p];
yind = [1+p:2:ny-2+p];
%See if exactly one diagonal is ones
%only (at most) one of the following can be true!
diag1(xind,yind) = (sand(xind,yind)==1) & (sand(xind+1,yind+1)==1) & ...
(sand(xind+1,yind)==0) & (sand(xind,yind+1)==0);
diag2(xind,yind) = (sand(xind+1,yind)==1) & (sand(xind,yind+1)==1) & ...
(sand(xind,yind)==0) & (sand(xind+1,yind+1)==0);
%The diagonals both not occupied by two particles
and12(xind,yind) = (diag1(xind,yind)==0) & (diag2(xind,yind)==0);
%One diagonal is occupied by two particles
or12(xind,yind) = diag1(xind,yind) | diag2(xind,yind);
%for every gas particle see if it near the boundary
sums(xind,yind) = gnd(xind,yind) | gnd(xind+1,yind) | ...
gnd(xind,yind+1) | gnd(xind+1,yind+1) ;
% cell layout:
% x,y x+1,y
% x,y+1 x+1,y+1
%If (no walls) and (diagonals are both not occupied)
%then there is no collision, so move opposite cell to current cell
%If (no walls) and (only one diagonal is occupied)
%then there is a collision so move ccw cell to the current cell
%If (a wall)
%then don't change the cell (causes a reflection)
sandNew(xind,yind) = ...
(and12(xind,yind) & ~sums(xind,yind) & sand(xind+1,yind+1)) + ...
(or12(xind,yind) & ~sums(xind,yind) & sand(xind,yind+1)) + ...
(sums(xind,yind) & sand(xind,yind));
sandNew(xind+1,yind) = ...
(and12(xind,yind) & ~sums(xind,yind) & sand(xind,yind+1)) + ...
(or12(xind,yind) & ~sums(xind,yind) & sand(xind,yind))+ ...
(sums(xind,yind) & sand(xind+1,yind));
sandNew(xind,yind+1) = ...
(and12(xind,yind) & ~sums(xind,yind) & sand(xind+1,yind)) + ...
(or12(xind,yind) & ~sums(xind,yind) & sand(xind+1,yind+1))+ ...
(sums(xind,yind) & sand(xind,yind+1));
sandNew(xind+1,yind+1) = ...
(and12(xind,yind) & ~sums(xind,yind) & sand(xind,yind)) + ...
(or12(xind,yind) & ~sums(xind,yind) & sand(xind+1,yind))+ ...
(sums(xind,yind) & sand(xind+1,yind+1));
sand = sandNew;
</PRE>
<LI><A
href="http://instruct1.cit.cornell.edu/courses/bionb441/CA/diffusion.m">Diffusion
limited aggregation</A> <BR>This system simulates sticky particles aggregating
to form a fractal structure. particle motion takes place with a rule similar
to the HPP-GAS rule in example 6. The difference is that particles are assumed
to be bouncing around in some dense (but invisible) liquid. The effect is to
randomize the direction of motion of every particle at every time step. Put
differently, every time-step is a collision step. The simulation is also
seeded with one fixed particle in the center of the array. Any diffusing
particle which touches it sticks to it, and itself becomes a non-moving,
sticky particle.<BR>
<P>The rule: <BR>
<UL>
<LI>Use a Margolus neighborhood. At every time step, rotate the 4 cells
either clockwise or counterclockwise by one cell with equal probability. The
rotation randomizes the velocities.
<LI>After the move, if one or more of the eight nearest neighboors is a
fixed, sticky particle, then freeze the particle and make it sticky.
</LI></UL>The update code: <BR><PRE> p=mod(i,2); %margolis neighborhood
%upper left cell update
xind = [1+p:2:nx-2+p];
yind = [1+p:2:ny-2+p];
%random velocity choice
vary = rand(nx,ny)< .5 ;
vary1 = 1-vary;
%diffusion rule -- margolus neighborhood
%rotate the 4 cells to randomize velocity
sandNew(xind,yind) = ...
vary(xind,yind).*sand(xind+1,yind) + ... %cw
vary1(xind,yind).*sand(xind,yind+1) ; %ccw
sandNew(xind+1,yind) = ...
vary(xind,yind).*sand(xind+1,yind+1) + ...
vary1(xind,yind).*sand(xind,yind) ;
sandNew(xind,yind+1) = ...
vary(xind,yind).*sand(xind,yind) + ...
vary1(xind,yind).*sand(xind+1,yind+1) ;
sandNew(xind+1,yind+1) = ...
vary(xind,yind).*sand(xind,yind+1) + ...
vary1(xind,yind).*sand(xind+1,yind) ;
sand = sandNew;
%for every sand grain see if it near the fixed, sticky cluster
sum(2:nx-1,2:ny-1) = gnd(2:nx-1,1:ny-2) + gnd(2:nx-1,3:ny) + ...
gnd(1:nx-2, 2:ny-1) + gnd(3:nx,2:ny-1) + ...
gnd(1:nx-2,1:ny-2) + gnd(1:nx-2,3:ny) + ...
gnd(3:nx,1:ny-2) + gnd(3:nx,3:ny);
%add to the cluster
gnd = ((sum> 0) & (sand==1)) | gnd ;
%and eliminate the moving particle
sand(find(gnd==1)) = 0;
</PRE>The following image shows the fixed cluster after many time steps.
<P><IMG src="CA.files/Diffusion1.gif">
<P></P>
<LI><A href="http://instruct1.cit.cornell.edu/courses/bionb441/CA/sand.m">Sand
pile</A> <BR>The cross-section of a pile of sand can be modeled using a
Margolus neighborhood to propagate cells, but with a different motion rule<BR>
<P>The rule: <BR>
<UL>
<LI>See reference [2] Chapter 2.2.6..
<LI>Cells have 2 states. State=0 is empty, state=1 represents agrain of
sand.
<LI>On any step, a particle can fall toward the bottom of the the 2x2 block.
The possible transitions are shown below. Walls and floors stop motion.
<LI>To make the motion slightly random, I added a rule which sometimes
reverses the state of the two lower cells after all the moves are
complete.<BR>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">0</TD>
<TD width="18%">0</TD>
<TD width="32%">goes</TD>
<TD width="15%">0</TD>
<TD width="17%">0</TD></TR>
<TR>
<TD width="18%">0</TD>
<TD width="18%">0</TD>
<TD width="32%">to</TD>
<TD width="15%">0</TD>
<TD width="17%">0</TD></TR></TBODY></TABLE>
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">1</TD>
<TD width="18%">0</TD>
<TD width="32%">goes</TD>
<TD width="15%">0</TD>
<TD width="17%">0</TD></TR>
<TR>
<TD width="18%">0</TD>
<TD width="18%">0</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">0</TD></TR></TBODY></TABLE>
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">0</TD>
<TD width="18%">1</TD>
<TD width="32%">goes</TD>
<TD width="15%">0</TD>
<TD width="17%">0</TD></TR>
<TR>
<TD width="18%">0</TD>
<TD width="18%">0</TD>
<TD width="32%">to</TD>
<TD width="15%">0</TD>
<TD width="17%">1</TD></TR></TBODY></TABLE>
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">1</TD>
<TD width="18%">0</TD>
<TD width="32%">goes</TD>
<TD width="15%">0</TD>
<TD width="17%">0</TD></TR>
<TR>
<TD width="18%">1</TD>
<TD width="18%">0</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">1</TD></TR></TBODY></TABLE>
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">1</TD>
<TD width="18%">0</TD>
<TD width="32%">goes</TD>
<TD width="15%">0</TD>
<TD width="17%">0</TD></TR>
<TR>
<TD width="18%">0</TD>
<TD width="18%">1</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">1</TD></TR></TBODY></TABLE>
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">0</TD>
<TD width="18%">1</TD>
<TD width="32%">goes</TD>
<TD width="15%">0</TD>
<TD width="17%">0</TD></TR>
<TR>
<TD width="18%">1</TD>
<TD width="18%">0</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">1</TD></TR></TBODY></TABLE>
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">0</TD>
<TD width="18%">1</TD>
<TD width="32%">goes</TD>
<TD width="15%">0</TD>
<TD width="17%">0</TD></TR>
<TR>
<TD width="18%">0</TD>
<TD width="18%">1</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">1</TD></TR></TBODY></TABLE>
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">1</TD>
<TD width="18%">1</TD>
<TD width="32%">goes</TD>
<TD width="15%">1</TD>
<TD width="17%">0</TD></TR>
<TR>
<TD width="18%">1</TD>
<TD width="18%">0</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">1</TD></TR></TBODY></TABLE>
<P>
<TABLE width="23%" border=2>
<TBODY>
<TR>
<TD width="18%">1</TD>
<TD width="18%">1</TD>
<TD width="32%">goes</TD>
<TD width="15%">0</TD>
<TD width="17%">1</TD></TR>
<TR>
<TD width="18%">0</TD>
<TD width="18%">1</TD>
<TD width="32%">to</TD>
<TD width="15%">1</TD>
<TD width="17%">1</TD></TR></TBODY></TABLE>
<P>The update code: <BR><PRE> p=mod(i,2); %margolis neighborhood
sand(nx/2,ny/2) = 1; %add a grain at the top
%upper left cell update
xind = [1+p:2:nx-2+p];
yind = [1+p:2:ny-2+p];
%randomize the flow -- 10% of the time
vary = rand(nx,ny)< .9 ;
vary1 = 1-vary;
sandNew(xind,yind) = ...
gnd(xind,yind).*sand(xind,yind) + ...
(1-gnd(xind,yind)).*sand(xind,yind).*sand(xind,yind+1) .* ...
(sand(xind+1,yind+1)+(1-sand(xind+1,yind+1)).*sand(xind+1,yind));
sandNew(xind+1,yind) = ...
gnd(xind+1,yind).*sand(xind+1,yind) + ...
(1-gnd(xind+1,yind)).*sand(xind+1,yind).*sand(xind+1,yind+1) .* ...
(sand(xind,yind+1)+(1-sand(xind,yind+1)).*sand(xind,yind));
sandNew(xind,yind+1) = ...
sand(xind,yind+1) + ...
(1-sand(xind,yind+1)) .* ...
( sand(xind,yind).*(1-gnd(xind,yind)) + ...
(1-sand(xind,yind)).*sand(xind+1,yind).*(1-gnd(xind+1,yind)).*sand(xind+1,yind+1));
sandNew(xind+1,yind+1) = ...
sand(xind+1,yind+1) + ...
(1-sand(xind+1,yind+1)) .* ...
( sand(xind+1,yind).*(1-gnd(xind+1,yind)) + ...
(1-sand(xind+1,yind)).*sand(xind,yind).*(1-gnd(xind,yind)).*sand(xind,yind+1));
%scramble the sites to make it look better
temp1 = sandNew(xind,yind+1).*vary(xind,yind+1) + ...
sandNew(xind+1,yind+1).*vary1(xind,yind+1);
temp2 = sandNew(xind+1,yind+1).*vary(xind,yind+1) + ...
sandNew(xind,yind+1).*vary1(xind,yind+1);
sandNew(xind,yind+1) = temp1;
sandNew(xind+1,yind+1) = temp2;
sand = sandNew;
</PRE></LI></UL></LI></OL>
<HR>
<P><B>References</B></P>
<P>[1] <I>Cellular Automata Machines</I> by Tommaso Toffoli and Norman Margolus,
MIT Press, 1987.</P>
<P>[2] <I>Cellular Automata Modeling of Physical Systems</I> by Bastien Chopard
and Michel Droz, Cambridge University Press, 1998.</P></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -