⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pca.m

📁 %The Metabolic Networks Toolbox contains functions to create, %modify, display, and simulate bioche
💻 M
字号:
% PCA principal component analysis%%   function [Xeig, A, S] = pca(X,graphicsflag,nplot,samplegroups)% %   the data matrix X contains the variables in its rows %   and the cases in its columns%%   Xeig           standard deviations of principal components%   A              loadings matrix%   S              principal components matrix%   graphicsflag   graphics output?%   nplot          no. of PC to plot%% (c) W. Liebermeister 2001function [Xeig, A, S] = pca(X,graphicsflag,nplot,samplegroups) X=X(:,find(sum(isnan(X))==0)); [ndim,ndata]       = size(X); Xmean              = mean(X,2); c                  = cov(X'); [eivec eival]      = eig(c); [Xeig,indexlist]   = sort(sqrt(abs(diag(eival)))); Xeig               = flipud(Xeig); A                  = eivec(:,flipud(indexlist)); S                  = A' * (X-repmat(Xmean,1,ndata)); if nargin>1 if graphicsflag  nplot=min(nplot,ndim);  figure(2)  subplot(1,2,1);  plot(Xeig);  xlabel('principal component')  ylabel('standard deviation')  subplot(1,2,2);  plot((Xeig.^2)/sum((Xeig.^2)));  xlabel('principal component')  ylabel('fraction of total variance')  figure(1)  plotmatrix(S(1:min(4,nplot),:)',S(1:min(4,nplot),:)');  title('Principal components');  if exist('samplegroups')    multipleGraphics(A(:,1:nplot),samplegroups,3);    figure(4);    style={'r.','g.','b.','k.','c.','m.','y.'};    scatterSamples(A(:,1:nplot),samplegroups,style);  else    multipleGraphics(A,{1:nplot},3);      figure(4)    scatterSamples(A(:,1:nplot),{1:ndim});  endendend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -