📄 svm.cs
字号:
pQp = (pQp + diff * (diff * Q[t][t] + 2 * Qp[t])) / (1 + diff) / (1 + diff);
for (j = 0; j < k; j++)
{
Qp[j] = (Qp[j] + diff * Q[t][j]) / (1 + diff);
p[j] /= (1 + diff);
}
}
}
if (iter >= max_iter)
System.Console.Error.Write("Exceeds max_iter in multiclass_prob\n");
}
// Cross-validation decision values for probability estimates
private static void svm_binary_svc_probability(svm_problem prob, svm_parameter param, double Cp, double Cn, double[] probAB)
{
int i;
int nr_fold = 5;
int[] perm = new int[prob.l];
double[] dec_values = new double[prob.l];
// random shuffle
for (i = 0; i < prob.l; i++)
perm[i] = i;
for (i = 0; i < prob.l; i++)
{
//UPGRADE_WARNING: 在 C# 中,收缩转换可能产生意外的结果。 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1042"'
int j = i + (int) (SupportClass.Random.NextDouble() * (prob.l - i));
do
{
int _ = perm[i]; perm[i] = perm[j]; perm[j] = _;
}
while (false);
}
for (i = 0; i < nr_fold; i++)
{
int begin = i * prob.l / nr_fold;
int end = (i + 1) * prob.l / nr_fold;
int j, k;
svm_problem subprob = new svm_problem();
subprob.l = prob.l - (end - begin);
subprob.x = new svm_node[subprob.l][];
subprob.y = new double[subprob.l];
k = 0;
for (j = 0; j < begin; j++)
{
subprob.x[k] = prob.x[perm[j]];
subprob.y[k] = prob.y[perm[j]];
++k;
}
for (j = end; j < prob.l; j++)
{
subprob.x[k] = prob.x[perm[j]];
subprob.y[k] = prob.y[perm[j]];
++k;
}
int p_count = 0, n_count = 0;
for (j = 0; j < k; j++)
if (subprob.y[j] > 0)
p_count++;
else
n_count++;
if (p_count == 0 && n_count == 0)
for (j = begin; j < end; j++)
dec_values[perm[j]] = 0;
else if (p_count > 0 && n_count == 0)
for (j = begin; j < end; j++)
dec_values[perm[j]] = 1;
else if (p_count == 0 && n_count > 0)
for (j = begin; j < end; j++)
dec_values[perm[j]] = - 1;
else
{
svm_parameter subparam = (svm_parameter) param.Clone();
subparam.probability = 0;
subparam.C = 1.0;
subparam.nr_weight = 2;
subparam.weight_label = new int[2];
subparam.weight = new double[2];
subparam.weight_label[0] = + 1;
subparam.weight_label[1] = - 1;
subparam.weight[0] = Cp;
subparam.weight[1] = Cn;
svm_model submodel = svm_train(subprob, subparam);
for (j = begin; j < end; j++)
{
double[] dec_value = new double[1];
svm_predict_values(submodel, prob.x[perm[j]], dec_value);
dec_values[perm[j]] = dec_value[0];
// ensure +1 -1 order; reason not using CV subroutine
dec_values[perm[j]] *= submodel.label[0];
}
}
}
sigmoid_train(prob.l, dec_values, prob.y, probAB);
}
// Return parameter of a Laplace distribution
private static double svm_svr_probability(svm_problem prob, svm_parameter param)
{
int i;
int nr_fold = 5;
double[] ymv = new double[prob.l];
double mae = 0;
svm_parameter newparam = (svm_parameter) param.Clone();
newparam.probability = 0;
svm_cross_validation(prob, newparam, nr_fold, ymv);
for (i = 0; i < prob.l; i++)
{
ymv[i] = prob.y[i] - ymv[i];
mae += System.Math.Abs(ymv[i]);
}
mae /= prob.l;
double std = System.Math.Sqrt(2 * mae * mae);
int count = 0;
mae = 0;
for (i = 0; i < prob.l; i++)
if (System.Math.Abs(ymv[i]) > 5 * std)
count = count + 1;
else
mae += System.Math.Abs(ymv[i]);
mae /= (prob.l - count);
System.Console.Error.Write("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + mae + "\r\n");
return mae;
}
// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
// perm, length l, must be allocated before calling this subroutine
private static void svm_group_classes(svm_problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret, int[][] count_ret, int[] perm)
{
int l = prob.l;
int max_nr_class = 16;
int nr_class = 0;
int[] label = new int[max_nr_class];
int[] count = new int[max_nr_class];
int[] data_label = new int[l];
int i;
for (i = 0; i < l; i++)
{
//UPGRADE_WARNING: 在 C# 中,收缩转换可能产生意外的结果。 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1042"'
int this_label = (int) (prob.y[i]);
int j;
for (j = 0; j < nr_class; j++)
{
if (this_label == label[j])
{
++count[j];
break;
}
}
data_label[i] = j;
if (j == nr_class)
{
if (nr_class == max_nr_class)
{
max_nr_class *= 2;
int[] new_data = new int[max_nr_class];
Array.Copy((System.Array) label, 0, (System.Array) new_data, 0, label.Length);
label = new_data;
new_data = new int[max_nr_class];
Array.Copy((System.Array) count, 0, (System.Array) new_data, 0, count.Length);
count = new_data;
}
label[nr_class] = this_label;
count[nr_class] = 1;
++nr_class;
}
}
int[] start = new int[nr_class];
start[0] = 0;
for (i = 1; i < nr_class; i++)
start[i] = start[i - 1] + count[i - 1];
for (i = 0; i < l; i++)
{
perm[start[data_label[i]]] = i;
++start[data_label[i]];
}
start[0] = 0;
for (i = 1; i < nr_class; i++)
start[i] = start[i - 1] + count[i - 1];
nr_class_ret[0] = nr_class;
label_ret[0] = label;
start_ret[0] = start;
count_ret[0] = count;
}
//
// Interface functions
//
public static svm_model svm_train(svm_problem prob, svm_parameter param)
{
svm_model model = new svm_model();
model.param = param;
if (param.svm_type == svm_parameter.ONE_CLASS || param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR)
{
// regression or one-class-svm
model.nr_class = 2;
model.label = null;
model.nSV = null;
model.probA = null; model.probB = null;
model.sv_coef = new double[1][];
if (param.probability == 1 && (param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR))
{
model.probA = new double[1];
model.probA[0] = svm_svr_probability(prob, param);
}
decision_function f = svm_train_one(prob, param, 0, 0);
model.rho = new double[1];
model.rho[0] = f.rho;
int nSV = 0;
int i;
for (i = 0; i < prob.l; i++)
if (System.Math.Abs(f.alpha[i]) > 0)
++nSV;
model.l = nSV;
model.SV = new svm_node[nSV][];
model.sv_coef[0] = new double[nSV];
int j = 0;
for (i = 0; i < prob.l; i++)
if (System.Math.Abs(f.alpha[i]) > 0)
{
model.SV[j] = prob.x[i];
model.sv_coef[0][j] = f.alpha[i];
++j;
}
}
else
{
// classification
int l = prob.l;
int[] tmp_nr_class = new int[1];
int[][] tmp_label = new int[1][];
int[][] tmp_start = new int[1][];
int[][] tmp_count = new int[1][];
int[] perm = new int[l];
// group training data of the same class
svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
int nr_class = tmp_nr_class[0];
int[] label = tmp_label[0];
int[] start = tmp_start[0];
int[] count = tmp_count[0];
svm_node[][] x = new svm_node[l][];
int i;
for (i = 0; i < l; i++)
x[i] = prob.x[perm[i]];
// calculate weighted C
double[] weighted_C = new double[nr_class];
for (i = 0; i < nr_class; i++)
weighted_C[i] = param.C;
for (i = 0; i < param.nr_weight; i++)
{
int j;
for (j = 0; j < nr_class; j++)
if (param.weight_label[i] == label[j])
break;
if (j == nr_class)
System.Console.Error.Write("warning: class label " + param.weight_label[i] + " specified in weight is not found\n");
else
weighted_C[j] *= param.weight[i];
}
// train k*(k-1)/2 models
bool[] nonzero = new bool[l];
for (i = 0; i < l; i++)
nonzero[i] = false;
decision_function[] f = new decision_function[nr_class * (nr_class - 1) / 2];
double[] probA = null, probB = null;
if (param.probability == 1)
{
probA = new double[nr_class * (nr_class - 1) / 2];
probB = new double[nr_class * (nr_class - 1) / 2];
}
int p = 0;
for (i = 0; i < nr_class; i++)
for (int j = i + 1; j < nr_class; j++)
{
svm_problem sub_prob = new svm_problem();
int si = start[i], sj = start[j];
int ci = count[i], cj = count[j];
sub_prob.l = ci + cj;
sub_prob.x = new svm_node[sub_prob.l][];
sub_prob.y = new double[sub_prob.l];
int k;
for (k = 0; k < ci; k++)
{
sub_prob.x[k] = x[si + k];
sub_prob.y[k] = + 1;
}
for (k = 0; k < cj; k++)
{
sub_prob.x[ci + k] = x[sj + k];
sub_prob.y[ci + k] = - 1;
}
if (param.probability == 1)
{
double[] probAB = new double[2];
svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB);
probA[p] = probAB[0];
probB[p] = probAB[1];
}
f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]);
for (k = 0; k < ci; k++)
if (!nonzero[si + k] && System.Math.Abs(f[p].alpha[k]) > 0)
nonzero[si + k] = true;
for (k = 0; k < cj; k++)
if (!nonzero[sj + k] && System.Math.Abs(f[p].alpha[ci + k]) > 0)
nonzero[sj + k] = true;
++p;
}
// build output
model.nr_class = nr_class;
model.label = new int[nr_class];
for (i = 0; i < nr_class; i++)
model.label[i] = label[i];
model.rho = new double[nr_class * (nr_class - 1) / 2];
for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
model.rho[i] = f[i].rho;
if (param.probability == 1)
{
model.probA = new double[nr_class * (nr_class - 1) / 2];
model.probB = new double[nr_class * (nr_class - 1) / 2];
for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
{
model.probA[i] = probA[i];
model.probB[i] = probB[i];
}
}
else
{
model.probA = null;
model.probB = null;
}
int nnz = 0;
int[] nz_count = new int[nr_class];
model.nSV = new int[nr_class];
for (i = 0; i < nr_class; i++)
{
int nSV = 0;
for (int j = 0; j < count[i]; j++)
if (nonzero[start[i] + j])
{
++nSV;
++nnz;
}
model.nSV[i] = nSV;
nz_count[i] = nSV;
}
System.Console.Out.Write("Total nSV = " + nnz + "\r\n");
model.l = nnz;
model.SV = new svm_node[nnz][];
p = 0;
for (i = 0; i < l; i++)
if (nonzero[i])
model.SV[p++] = x[i];
int[] nz_start = new int[nr_class];
nz_start[0] = 0;
for (i = 1; i < nr_class; i++)
nz_start[i] = nz_start[i - 1] + nz_count[i - 1];
model.sv_coef = new double[nr_class - 1][];
for (i = 0; i < nr_class - 1; i++)
model.sv_coef[i] = new double[nnz];
p = 0;
for (i = 0; i < nr_class; i++)
for (int j = i + 1; j < nr_class; j++)
{
// classifier (i,j): coefficients with
// i are in sv_coef[j-1][nz_start[i]...],
// j are in sv_coef[i][nz_start[j]...]
int si = start[i];
int sj = start[j];
int ci = count[i];
int cj = count[j];
int q = nz_start[i];
int k;
for (k = 0; k < ci; k++)
if (nonzero[si + k])
model.sv_coef[j - 1][q++] = f[p].alpha[k];
q = nz_start[j];
for (k = 0; k < cj; k++)
if (nonzero[sj + k])
model.sv_coef[i][q++] = f[p].alpha[ci + k];
++p;
}
}
return model;
}
// Stratified cross validation
public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target)
{
int i;
int[] fold_start = new int[nr_fold + 1];
int l = prob.l;
int[] perm = new int[l];
// stratified cv may not give leave-one-out rate
// Each class to l folds -> some folds may have zero elements
if ((param.svm_type == svm_parameter.C_SVC || param.svm_type == svm_parameter.NU_SVC) && nr_fold < l)
{
int[] tmp_nr_class = new int[1];
int[][] tmp_label = new int[1][];
int[][] tmp_start = new int[1][];
int[][] tmp_count = new int[1][];
svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
int nr_class = tmp_nr_class[0];
int[] label = tmp_label[0];
int[] start = tmp_start[0];
int[] count = tmp_count[0];
// random shuffle and then data grouped by fold using the array perm
int[] fold_count = new int[nr_fold];
int c;
int[] index = new int[l];
for (i = 0; i < l; i++)
index[i] = perm[i];
for (c = 0; c < nr_class; c++)
for (i = 0; i < count[c]; i++)
{
//UPGRADE_WARNING: 在 C# 中,收缩转换可能产生意外的结果。 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1042"'
int j = i + (int) (SupportClass.Random.NextDouble() * (count[c] - i));
do
{
int _ = index[start[c] + j]; index[start[c] + j] = index[start[c] + i]; index[start[c] + i] = _;
}
while (false);
}
for (i = 0; i < nr_fold; i++)
{
fold_count[i] = 0;
for (c = 0; c < nr_class; c++)
fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold;
}
fold_start[0] = 0;
for (i = 1; i <= nr_fold; i++)
fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
for (c = 0; c < nr_class; c++)
for (i = 0; i < nr_fold; i++)
{
int begin = start[c] + i * count[c] / nr_fold;
int end = start[c] + (i + 1) * count[c] / nr_fold;
for (int j = begin; j < end; j++)
{
perm[fold_start[i]] = index[j];
fold_start[i]++;
}
}
fold_start[0] = 0;
for (i = 1; i <= nr_fold; i++)
fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
}
else
{
for (i = 0; i < l; i++)
perm[i] = i;
for (i = 0; i < l; i++)
{
//
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -