📄 ninedigitsofpiat.h
字号:
// NineDigitsOfPiAt.h
/*
* Computation of the n'th decimal digit of \pi with very little memory.
* Written by Fabrice Bellard on January 8, 1997.
*
* We use a slightly modified version of the method described by Simon
* Plouffe in "On the Computation of the n'th decimal digit of various
* transcendental numbers" (November 1996). We have modified the algorithm
* to get a running time of O(n^2) instead of O(n^3log(n)^3).
*
* This program uses mostly integer arithmetic. It may be slow on some
* hardwares where integer multiplications and divisons must be done
* by software. We have supposed that 'int' has a size of 32 bits. If
* your compiler supports 'long long' integers of 64 bits, you may use
* the integer version of 'mul_mod' (see HAS_LONG_LONG).
*/
#include <stdlib.h>
#include <math.h>
// NOTE: Modified to use VC++ __int64
#define mul_mod(a,b,m) (int)(( (__int64) (a) * (__int64) (b) ) % (m))
/* return the inverse of x mod y */
inline
int inv_mod(int x,int y) {
int q,u,v,a,c,t;
u=x;
v=y;
c=1;
a=0;
do {
q=v/u;
t=c;
c=a-q*c;
a=t;
t=u;
u=v-q*u;
v=t;
} while (u!=0);
a=a%y;
if (a<0) a=y+a;
return a;
}
/* return (a^b) mod m */
inline
int pow_mod(int a,int b,int m)
{
int r,aa;
r=1;
aa=a;
while (1) {
if (b&1) r=mul_mod(r,aa,m);
b=b>>1;
if (b == 0) break;
aa=mul_mod(aa,aa,m);
}
return r;
}
/* return true if n is prime */
inline
int is_prime(int n)
{
int r,i;
if ((n % 2) == 0) return 0;
r=(int)(sqrt(n));
for(i=3;i<=r;i+=2) if ((n % i) == 0) return 0;
return 1;
}
/* return the prime number immediatly after n */
inline
int next_prime(int n)
{
do {
n++;
} while (!is_prime(n));
return n;
}
// This used to be main()
inline
long NineDigitsOfPiStartingAt(int n)
{
int av,a,vmax,N,num,den,k,kq,kq2,t,v,s,i;
double sum;
N=(int)((n+20)*log(10)/log(2));
sum=0;
for(a=3;a<=(2*N);a=next_prime(a)) {
vmax=(int)(log(2*N)/log(a));
av=1;
for(i=0;i<vmax;i++) av=av*a;
s=0;
num=1;
den=1;
v=0;
kq=1;
kq2=1;
for(k=1;k<=N;k++) {
t=k;
if (kq >= a) {
do {
t=t/a;
v--;
} while ((t % a) == 0);
kq=0;
}
kq++;
num=mul_mod(num,t,av);
t=(2*k-1);
if (kq2 >= a) {
if (kq2 == a) {
do {
t=t/a;
v++;
} while ((t % a) == 0);
}
kq2-=a;
}
den=mul_mod(den,t,av);
kq2+=2;
if (v > 0) {
t=inv_mod(den,av);
t=mul_mod(t,num,av);
t=mul_mod(t,k,av);
for(i=v;i<vmax;i++) t=mul_mod(t,a,av);
s+=t;
if (s>=av) s-=av;
}
}
t=pow_mod(10,n-1,av);
s=mul_mod(s,t,av);
sum=fmod(sum+(double) s/ (double) av,1.0);
}
return (long)(sum*1e9);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -