⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nlmeans.h

📁 this a image processing program
💻 H
字号:
/*-----------------------------------------------------------------------------------------  File        : nlmeans.h  Description : CImg plugin that implements the non-local mean filter, as described in :    [1] Buades, A.; Coll, B.; Morel, J.-M.: A non-local algorithm for image denoising        IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005.        Volume 2,  20-25 June 2005 Page(s):60 - 65 vol. 2    [2] Buades, A. Coll, B. and Morel, J.: A review of image denoising algorithms, with a new one.        Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 4 (2004) 490-530    [3] Gasser, T. Sroka,L. Jennen Steinmetz,C. Residual variance and residual pattern nonlinear regression.        Biometrika 73 (1986) 625-659  Copyright   : Jerome Boulanger - http://www.irisa.fr/vista/Equipe/People/Jerome.Boulanger.html  This software is governed by the CeCILL  license under French law and  abiding by the rules of distribution of free software.  You can  use,  modify and/ or redistribute the software under the terms of the CeCILL  license as circulated by CEA, CNRS and INRIA at the following URL  "http://www.cecill.info".  As a counterpart to the access to the source code and  rights to copy,  modify and redistribute granted by the license, users are provided only  with a limited warranty  and the software's author,  the holder of the  economic rights,  and the successive licensors  have only  limited  liability.  In this respect, the user's attention is drawn to the risks associated  with loading,  using,  modifying and/or developing or reproducing the  software by the user in light of its specific status of free software,  that may mean  that it is complicated to manipulate,  and  that  also  therefore means  that it is reserved for developers  and  experienced  professionals having in-depth computer knowledge. Users are therefore  encouraged to load and test the software's suitability as regards their  requirements in conditions enabling the security of their systems and/or  data to be ensured and,  more generally, to use and operate it in the  same conditions as regards security.  The fact that you are presently reading this means that you have had  knowledge of the CeCILL license and that you accept its terms.------------------------------------------------------------------------------------------*/#ifndef cimg_plugin_nlmeans#define cimg_plugin_nlmeans#include "noise_analysis.h"//! NL-Means denoising algorithm./**   This is the in-place version of get_nlmean().**/CImg<T>& nlmeans(int patch_size=1, double lambda=-1, double alpha=3, double sigma=-1, int sampling=1){  if (!is_empty()){    if (sigma<0) sigma=std::sqrt(noise_variance()); // noise variance estimation    double np=(2*patch_size+1)*(2*patch_size+1)*dimv()/(double)sampling;    if (lambda<0) // Bandwidth estimation      if (np<100)	lambda =(((((( 1.1785e-12*np -5.1827e-10)*np+ 9.5946e-08)*np -9.7798e-06)*np+ 6.0756e-04)*np -0.0248)*np+ 1.9203)*np +7.9599;      else	lambda = (-7.2611e-04*np+ 1.3213)*np+ 15.2726;#if cimg_debug==1      fprintf(stderr,"Size of the patch                                 : %dx%d \n",	      2*patch_size+1,2*patch_size+1);      fprintf(stderr,"Size of window where similar patch are looked for : %dx%d \n",	      (int)(alpha*(2*patch_size+1)),(int)(alpha*(2*patch_size+1)));      fprintf(stderr,"Bandwidth of the kernel                           : %fx%f^2 \n",	      lambda,sigma);      fprintf(stderr,"Noise standard deviation estimated to             : %f \n",	      sigma);#endif    CImg<T> dest(dimx(),dimy(),dimz(),dimv(),0);    double * uhat = new double[dimv()];    double h2=-.5/(lambda*sigma*sigma); // [Kervrann] notations    if (dimz()!=1){// 3D case      CImg<> P=(*this).get_blur(1); // inspired from Mahmoudi&Sapiro SPletter dec 05      int n_simu=64;      CImg<> tmp(n_simu,n_simu,n_simu);      double sig = std::sqrt(tmp.fill(0.f).noise(sigma).blur(1).pow(2.).sum()/(n_simu*n_simu*n_simu));      int patch_size_z=0;      int pxi=(int)(alpha*patch_size),	pyi=(int)(alpha*patch_size),	pzi=2;//Define the size of the neighborhood in z      for (int zi=0;zi<dimz();zi++){#if cimg_debug==1	fprintf(stderr,"\rProcessing : %3d %%",(int)((float)zi/(float)dimz()*100.));fflush(stdout);#endif	for (int yi=0;yi<dimy();yi++)	  for (int xi=0;xi<dimx();xi++){	    for (int v=0;v<dimv();v++) uhat[v] = 0;	    float sw=0,wmax=-1;	    for (int zj=cimg::max(0,zi-pzi);zj<cimg::min(dimz(),zi+pzi+1);zj++)	      for (int yj=cimg::max(0,yi-pyi);yj<cimg::min(dimy(),yi+pyi+1);yj++)		for (int xj=cimg::max(0,xi-pxi);xj<cimg::min(dimx(),xi+pxi+1);xj++)		  if( cimg::abs(P(xi,yi,zi)-P(xj,yj,zj))/sig < 3){		    double d = 0;		    int n = 0;		    if (xi!=xj && yi!=yj && zi!=zj){		      for (int kz=-patch_size_z;kz<patch_size_z+1;kz+=sampling){			int zj_ = zj+kz;			int zi_ = zi+kz;			if (zj_>=0 && zj_<dimz() && zi_>=0 && zi_<dimz())			  for (int ky=-patch_size;ky<=patch_size;ky+=sampling){			    int yj_ = yj+ky;			    int yi_ = yi+ky;			    if (yj_>=0 && yj_<dimy() && yi_>=0 && yi_<dimy())			      for (int kx=-patch_size;kx<=patch_size;kx+=sampling){				int xj_ = xj+kx;				int xi_ = xi+kx;				if (xj_>=0 && xj_<dimx() && xi_>=0 && xi_<dimx())				  for (int v=0;v<dimv();v++){				    double d1 = (*this)(xj_,yj_,zj_,v)-(*this)(xi_,yi_,zi_,v);				    d += d1*d1;				    n++;				  }			      }			  }		      }			  float w = (float)std::exp(d*h2);		      wmax = w>wmax?w:wmax;		      for (int v=0;v<dimv();v++) uhat[v] += w*(*this)(xj,yj,zj,v);		      sw += w;		    }		  }	    // add the central pixel		{ for (int v=0;v<dimv();v++) uhat[v] += wmax*(*this)(xi,yi,zi,v); }	    sw += wmax;		{ for (int v=0;v<dimv();v++) dest(xi,yi,zi,v)= (T) (uhat[v] /= sw); }	  }      }    }    else{ // 2D case      CImg<> P=(*this).get_blur(1); // inspired from Mahmoudi&Sapiro SPletter dec 05      int n_simu=512;      CImg<> tmp(n_simu,n_simu);      double sig = std::sqrt(tmp.fill(0.f).noise(sigma).blur(1).pow(2.).sum()/(n_simu*n_simu));      int pxi=(int)(alpha*patch_size),pyi=(int)(alpha*patch_size);//Define the size of the neighborhood      for (int yi=0;yi<dimy();yi++){#if cimg_debug==1	fprintf(stderr,"\rProcessing : %3d %%",(int)((float)yi/(float)dimy()*100.));fflush(stdout);#endif	for (int xi=0;xi<dimx();xi++){	  for (int v=0;v<dimv();v++) uhat[v] = 0;	  float sw=0,wmax=-1;	  for (int yj=cimg::max(0,yi-pyi);yj<cimg::min(dimy(),yi+pyi+1);yj++)	    for (int xj=cimg::max(0,xi-pxi);xj<cimg::min(dimx(),xi+pxi+1);xj++)	      if( cimg::abs(P(xi,yi)-P(xj,yj))/sig < 3.){		double d = 0;		int n = 0;		if (!(xi==xj && yi==yj))		  for (int ky=-patch_size;ky<patch_size+1;ky+=sampling){		    int yj_ = yj+ky;		    int yi_ = yi+ky;		    if (yj_>=0 && yj_<dimy() && yi_>=0 && yi_<dimy())		      for (int kx=-patch_size;kx<patch_size+1;kx+=sampling){			int xj_ = xj+kx;			int xi_ = xi+kx;			if (xj_>=0 && xj_<dimx() && xi_>=0 && xi_<dimx())			  for (int v=0;v<dimv();v++){			    double d1 = (*this)(xj_,yj_,v)-(*this)(xi_,yi_,v);			    d += d1*d1;			    n++;			  }		      }		  }		float w=(float)std::exp(d*h2);		for (int v=0;v<dimv();v++) uhat[v] += w*(*this)(xj,yj,v);		wmax = w>wmax?w:wmax; // Store the maximum of the weights		sw += w; // Compute the sum of the weights	      }	  // add the central pixel with the maximum weight		  { for (int v=0;v<dimv();v++) uhat[v] += wmax*(*this)(xi,yi,v); }	  sw += wmax;	  // Compute the estimate for the current pixel	  { for (int v=0;v<dimv();v++) dest(xi,yi,v)= (T) (uhat[v] /= sw); }	}      }// main loop    }// 2d    delete [] uhat;    *this=dest;#if cimg_debug==1    fprintf(stderr,"\n"); // make a new line#endif  }// is empty  return *this;}//! Get the result of the NL-Means denoising algorithm.    /**       \param patch_size = radius of the patch (1=3x3 by default)       \param lambda = bandwidth ( -1 by default : automatic selection)       \param alpha  = size of the region where similar patch are searched (3 x patch_size = 9x9 by default)       \param sigma = noise standard deviation (-1 = estimation)       \param sampling = sampling of the patch (1 = uses all point, 2 = uses one point on 4, etc)       If the image has three dimensions then the patch is only in  2D and the neighborhood extent in time is only 5.       If the image has several channel (color images), the distance between the two patch is computed using       all the channels.       The greater the patch is the best is the result.       Lambda parameter is function of the size of the patch size. The automatic Lambda parameter is taken       in the Chi2 table at a significiance level of 0.01. This diffear from the original paper [1]. The weighted average becomes then:       \f$$ \hat{f}(x,y) = \sum_{x',y'} \frac{1}{Z} exp(\frac{P(x,y)-P(x',y')}{2 \lambda \sigma^2}) f(x',y') $$\f       where \f$ P(x,y) $\f denotes the patch in (x,y) location.       An a priori is also used to increase the speed of the algorithm in the spirit of Sapiro et al. SPletter dec 05       This very basic version of the Non-Local Means algorithm provides an output image which contains       some residual noise with a relatively small variance (\f$\sigma<5$\f).       [1] A non-local algorithm for image denoising           Buades, A.; Coll, B.; Morel, J.-M.;           Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on           Volume 2,  20-25 June 2005 Page(s):60 - 65 vol. 2    **/CImg<T> get_nlmeans( int patch_size=1,  double lambda=-1, double alpha=3 ,double sigma=-1, int sampling=1)   {  return CImg<T>(*this).nlmeans(patch_size,lambda,alpha,sigma,sampling);}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -