📄 edge_explorer.cpp
字号:
/*------------------------------------------------------------------------------ File : edge_explorer.cpp Description : Real time edge detection while moving a ROI (rectangle of interest) over the original image. Copyright : Orges Leka - oleka (at) students.uni-mainz.de This software is governed by the CeCILL license under French law and abiding by the rules of distribution of free software. You can use, modify and/ or redistribute the software under the terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following URL "http://www.cecill.info". As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the software's author, the holder of the economic rights, and the successive licensors have only limited liability. In this respect, the user's attention is drawn to the risks associated with loading, using, modifying and/or developing or reproducing the software by the user in light of its specific status of free software, that may mean that it is complicated to manipulate, and that also therefore means that it is reserved for developers and experienced professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the software's suitability as regards their requirements in conditions enabling the security of their systems and/or data to be ensured and, more generally, to use and operate it in the same conditions as regards security. The fact that you are presently reading this means that you have had knowledge of the CeCILL license and that you accept its terms. -----------------------------------------------------------------------------*/#include "../CImg.h"using namespace cimg_library;// The undef below is necessary when using a non-standard compiler.#ifdef cimg_use_visualcpp6#define std#endif// Start main procedure//-----------------------int main(int argc, char** argv) { // Usage of the program displayed at the command line cimg_usage("Real time edge detection with CImg. (c) Orges Leka"); // Read command line arguments // With cimg_option we can get a new name for the image which is to be loaded from the command line. const char* img_name = cimg_option("-i", "img/lena.pgm","Input image."); double alpha = cimg_option("-a",1.0,"Blurring the gradient image."), thresL = cimg_option("-tl",13.5,"Lower thresholding used in Hysteresis."), thresH = cimg_option("-th",13.6,"Higher thresholding used in Hysteresis."); const unsigned int mode = cimg_option("-m",1,"Detection mode: 1 = Hysteresis, 2 = Gradient angle."), factor = cimg_option("-s",80,"Half-size of edge-explorer window."); cimg_help("\nAdditional notes : user can press following keys on main display window :\n" " - Left arrow : Decrease alpha.\n" " - Right arrow : Increase alpha.\n"); // Construct a new image called 'edge' of size (2*factor,2*factor) // and of type 'unsigned char'. CImg<unsigned char> edge(2*factor,2*factor); CImgDisplay disp_edge(512,512,"Edge Explorer"); // Load the image with the name 'img_name' into the CImg 'img'. // and create a display window 'disp' for the image 'img'. const CImg<unsigned char> img(img_name); CImgDisplay disp(img,"Original Image"); // Begin main interaction loop. int x = 0, y = 0; bool redraw = false; while (!disp.is_closed && disp.key!=cimg::keyQ && disp.key!=cimg::keyESC) { disp.wait(); switch (disp.key) { case cimg::keyARROWLEFT: case cimg::keyARROWDOWN: alpha=cimg::max(0.0,alpha-0.05); redraw = true; break; case cimg::keyARROWUP: case cimg::keyARROWRIGHT: alpha+=0.05; redraw = true; break; } if (disp_edge.is_resized) { disp_edge.resize(); redraw = true; } if (disp_edge.is_closed) disp_edge.show(); if (disp.is_resized) disp.resize(disp); if (disp.mouse_x>=0) { x = disp.mouse_x; // Getting the current position of the mouse. y = disp.mouse_y; // redraw = true; // The image should be redrawn. } if (redraw) { disp_edge.set_title("Edge explorer (alpha=%g)",alpha); const int x0 = x-factor, y0 = y-factor, // These are the coordinates for the red rectangle x1 = x+factor, y1 = y+factor; // to be drawn on the original image. const unsigned char red[3] = { 255,0,0 }, // black[3] = { 0,0,0 }; // Defining the colors we need for drawing. (+img).draw_line(x0,y0,x1,y0,red).draw_line(x1,y0,x1,y1,red).draw_line(x1,y1,x0,y1,red).draw_line(x0,y1,x0,y0,red).display(disp); //^ We draw the red rectangle on the original window using 'draw_line'. Then we display the result via '.display(disp)' . // Observe, that the color 'red' has to be of type 'const unsigned char', // since the image 'img' is of type 'const CImg<unsigned char>'. //'normalize' is used to get a greyscaled image. CImg<> visu_bw = CImg<>(img).get_crop(x0,y0,x1,y1).get_norm_pointwise().normalize(0,255).resize(-100,-100,1,2,2); // get_crop(x0,y0,x1,y1) gets the rectangle we are interested in. edge.fill(255); // Background color in the edge-detection window is white. // grad[0] is the gradient image of 'visu_bw' in x-direction. // grad[1] is the gradient image of 'visu_bw' in y-direction. CImgList<> grad(visu_bw.blur((float)alpha).normalize(0,255).get_gradientXY(3)); // To avoid unnecessary calculations in the image loops: const double pi = cimg::PI, p8 = pi/8.0, p38 = 3.0*p8, p58 = 5.0*p8, p78 = 7.0*p8; cimg_forXY(visu_bw,s,t) { // We take s,t instead of x,y, since x,y are already used. // s corresponds to the x-ordinate of the pixel while t corresponds to the y-ordinate. if ( 1 <= s && s <= visu_bw.dimx()-1 && 1 <= t && t <=visu_bw.dimy()-1) { // if - good points double Gs = grad[0](s,t), // Gt = grad[1](s,t), // The actual pixel is (s,t) Gst = std::abs(Gs) + std::abs(Gt), // // ^-- For efficient computation we observe that |Gs|+ |Gt| ~=~ sqrt( Gs^2 + Gt^2) Gr, Gur, Gu, Gul, Gl, Gdl, Gd, Gdr; // ^-- right, up right, up, up left, left, down left, down, down right. double theta = std::atan2(Gt,Gs)+pi; // theta is from the interval [0,Pi] switch(mode) { case 1: // Hysterese is applied if (Gst>=thresH) { edge.draw_point(s,t,black); } else if (thresL <= Gst && Gst < thresH) { // Neighbourhood of the actual pixel: Gr = std::abs(grad[0](s+1,t)) + std::abs(grad[1](s+1,t)); // right Gl = std::abs(grad[0](s-1,t)) + std::abs(grad[1](s-1,t)); // left Gur = std::abs(grad[0](s+1,t+1)) + std::abs(grad[1](s+1,t+1)); // up right Gdl = std::abs(grad[0](s-1,t-1)) + std::abs(grad[1](s-1,t-1)); // down left Gu = std::abs(grad[0](s,t+1)) + std::abs(grad[1](s,t+1)); // up Gd = std::abs(grad[0](s,t-1)) + std::abs(grad[1](s,t-1)); // down Gul = std::abs(grad[0](s-1,t+1)) + std::abs(grad[1](s-1,t+1)); // up left Gdr = std::abs(grad[0](s+1,t-1)) + std::abs(grad[1](s+1,t-1)); // down right if (Gr>=thresH || Gur>=thresH || Gu>=thresH || Gul>=thresH || Gl>=thresH || Gdl >=thresH || Gu >=thresH || Gdr >=thresH) { edge.draw_point(s,t,black); } }; break; case 2: // Angle 'theta' of the gradient (Gs,Gt) at the point (s,t). if(theta >= pi)theta-=pi; //rounding theta: if ((p8 < theta && theta <= p38 ) || (p78 < theta && theta <= pi)) { // See (*) below for explanation of the vocabulary used. // Direction-pixel is (s+1,t) with corresponding gradient value Gr. Gr = std::abs(grad[0](s+1,t)) + std::abs(grad[1](s+1,t)); // right // Contra-direction-pixel is (s-1,t) with corresponding gradient value Gl. Gl = std::abs(grad[0](s-1,t)) + std::abs(grad[1](s-1,t)); // left if (Gr < Gst && Gl < Gst) { edge.draw_point(s,t,black); } } else if ( p8 < theta && theta <= p38) { // Direction-pixel is (s+1,t+1) with corresponding gradient value Gur. Gur = std::abs(grad[0](s+1,t+1)) + std::abs(grad[1](s+1,t+1)); // up right // Contra-direction-pixel is (s-1,t-1) with corresponding gradient value Gdl. Gdl = std::abs(grad[0](s-1,t-1)) + std::abs(grad[1](s-1,t-1)); // down left if (Gur < Gst && Gdl < Gst) { edge.draw_point(s,t,black); } } else if ( p38 < theta && theta <= p58) { // Direction-pixel is (s,t+1) with corresponding gradient value Gu. Gu = std::abs(grad[0](s,t+1)) + std::abs(grad[1](s,t+1)); // up // Contra-direction-pixel is (s,t-1) with corresponding gradient value Gd. Gd = std::abs(grad[0](s,t-1)) + std::abs(grad[1](s,t-1)); // down if (Gu < Gst && Gd < Gst) { edge.draw_point(s,t,black); } } else if (p58 < theta && theta <= p78) { // Direction-pixel is (s-1,t+1) with corresponding gradient value Gul. Gul = std::abs(grad[0](s-1,t+1)) + std::abs(grad[1](s-1,t+1)); // up left // Contra-direction-pixel is (s+1,t-1) with corresponding gradient value Gdr. Gdr = std::abs(grad[0](s+1,t-1)) + std::abs(grad[1](s+1,t-1)); // down right if (Gul < Gst && Gdr < Gst) { edge.draw_point(s,t,black); } }; break; } // switch } // if good-points } // cimg_forXY */ edge.display(disp_edge); }// if redraw } // while return 0;}// (*) Comments to the vocabulary used:// If (s,t) is the current pixel, and G=(Gs,Gt) is the gradient at (s,t),// then the _direction_pixel_ of (s,t) shall be the one of the eight neighbour pixels// of (s,t) in whose direction the gradient G shows.// The _contra_direction_pixel is the pixel in the opposite direction in which the gradient G shows.// The _corresponding_gradient_value_ of the pixel (x,y) with gradient G = (Gx,Gy)// shall be |Gx|+|Gy| ~=~ sqrt(Gx^2+Gy^2).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -