📄 dtmri_view.cpp
字号:
/*------------------------------------------------------------------------------- File : dtmri_view.cpp Description : A viewer of Diffusion-Tensor MRI volumes (medical imaging). Copyright : David Tschumperle - http://www.greyc.ensicaen.fr/~dtschump/ This software is governed by the CeCILL-C license under French law and abiding by the rules of distribution of free software. You can use, modify and/ or redistribute the software under the terms of the CeCILL-C license as circulated by CEA, CNRS and INRIA at the following URL "http://www.cecill.info". As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the software's author, the holder of the economic rights, and the successive licensors have only limited liability. In this respect, the user's attention is drawn to the risks associated with loading, using, modifying and/or developing or reproducing the software by the user in light of its specific status of free software, that may mean that it is complicated to manipulate, and that also therefore means that it is reserved for developers and experienced professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the software's suitability as regards their requirements in conditions enabling the security of their systems and/or data to be ensured and, more generally, to use and operate it in the same conditions as regards security. The fact that you are presently reading this means that you have had knowledge of the CeCILL-C license and that you accept its terms. ------------------------------------------------------------------------------*/#include "../CImg.h"using namespace cimg_library;// The undef below is necessary when using a non-standard compiler.#ifdef cimg_use_visualcpp6#define std#endif// Compute fractional anisotropy (FA) of a tensor//-------------------------------------------template<typename T> float get_FA(const T& val1, const T& val2, const T& val3) { const float l1 = val1>0?val1:0, l2 = val2>0?val2:0, l3 = val3>0?val3:0, lm = (l1+l2+l3)/3, tr2 = 2*( l1*l1 + l2*l2 + l3*l3 ), ll1 = l1-lm, ll2 = l2-lm, ll3 = l3-lm; if (tr2>0) return (float)std::sqrt( 3*(ll1*ll1 + ll2*ll2 + ll3*ll3)/tr2 ); return 0;}// Insert an ellipsoid in a CImg 3D scene//----------------------------------------template<typename t,typename tp,typename tf,typename tc>void insert_ellipsoid(const CImg<t>& tensor,const float X,const float Y,const float Z,const float tfact, const float vx, const float vy, const float vz, CImgList<tp>& points, CImgList<tf>& faces, CImgList<tc>& colors, const unsigned int res1 = 20, const unsigned int res2 = 20) { // Compute eigen elements const float l1 = tensor[0], l2 = tensor[1], l3 = tensor[2], fa = get_FA(l1,l2,l3); CImg<> vec = CImg<>::matrix(tensor[3],tensor[6],tensor[9], tensor[4],tensor[7],tensor[10], tensor[5],tensor[8],tensor[11]); const int r = (int)cimg::min(30+1.5f*cimg::abs(255*fa*tensor[3]),255.0f), g = (int)cimg::min(30+1.5f*cimg::abs(255*fa*tensor[4]),255.0f), b = (int)cimg::min(30+1.5f*cimg::abs(255*fa*tensor[5]),255.0f); // Define mesh points const unsigned int N0 = points.size; for (unsigned int v=1; v<res2; v++) for (unsigned int u=0; u<res1; u++) { const float alpha = (float)(u*2*cimg::PI/res1), beta = (float)(-cimg::PI/2 + v*cimg::PI/res2), x = (float)(tfact*l1*std::cos(beta)*std::cos(alpha)), y = (float)(tfact*l2*std::cos(beta)*std::sin(alpha)), z = (float)(tfact*l3*std::sin(beta)); points.insert((CImg<tp>::vector(X,Y,Z)+vec*CImg<tp>::vector(x,y,z)).mul(CImg<tp>::vector(vx,vy,vz))); } const unsigned int N1 = points.size; points.insert((CImg<tp>::vector(X,Y,Z)+vec*CImg<tp>::vector(0,0,-l3*tfact))); points.insert((CImg<tp>::vector(X,Y,Z)+vec*CImg<tp>::vector(0,0,l3*tfact))); points[points.size-2](0)*=vx; points[points.size-2](1)*=vy; points[points.size-2](2)*=vz; points[points.size-1](0)*=vx; points[points.size-1](1)*=vy; points[points.size-1](2)*=vz; // Define mesh triangles for (unsigned int vv=0; vv<res2-2; vv++) for (unsigned int uu=0; uu<res1; uu++) { const int nv = (vv+1)%(res2-1), nu = (uu+1)%res1; faces.insert(CImg<tf>::vector(N0+res1*vv+nu,N0+res1*nv+uu,N0+res1*vv+uu)); faces.insert(CImg<tf>::vector(N0+res1*vv+nu,N0+res1*nv+nu,N0+res1*nv+uu)); colors.insert(CImg<tc>::vector(r,g,b)); colors.insert(CImg<tc>::vector(r,g,b)); } for (unsigned int uu=0; uu<res1; uu++) { const int nu = (uu+1)%res1; faces.insert(CImg<tf>::vector(N0+nu,N0+uu,N1)); faces.insert(CImg<tf>::vector(N0+res1*(res2-2)+nu, N1+1,N0+res1*(res2-2)+uu)); colors.insert(CImg<tc>::vector(r,g,b)); colors.insert(CImg<tc>::vector(r,g,b)); }}// Insert a fiber in a CImg 3D scene//-----------------------------------template<typename T,typename te,typename tp, typename tf, typename tc>void insert_fiber(const CImg<T>& fiber, const CImg<te>& eigen, const CImg<tc>& palette, const int xm, const int ym, const int zm, const float vx, const float vy, const float vz, CImgList<tp>& points, CImgList<tf>& primitives, CImgList<tc>& colors) { const int N0 = points.size; float x0 = fiber(0,0), y0 = fiber(0,1), z0 = fiber(0,2), fa0 = eigen.linear_pix3d(x0,y0,z0,12); points.insert(CImg<>::vector(vx*(x0-xm),vy*(y0-ym),vz*(z0-zm))); for (unsigned int l=1; l<fiber.width; l++) { float x1 = fiber(l,0), y1 = fiber(l,1), z1 = fiber(l,2), fa1 = eigen.linear_pix3d(x1,y1,z1,12); points.insert(CImg<tp>::vector(vx*(x1-xm),vy*(y1-ym),vz*(z1-zm))); primitives.insert(CImg<tf>::vector(N0+l-1,N0+l)); const unsigned char icol = (unsigned char)(fa0*255), r = palette(icol,0), g = palette(icol,1), b = palette(icol,2); colors.insert(CImg<unsigned char>::vector(r,g,b)); x0=x1; y0=y1; z0=z1; fa0=fa1; }}// Compute fiber tracking using 4th-order Runge Kutta integration//-----------------------------------------------------------------template<typename T>CImg<> get_fibertrack(CImg<T>& eigen, const int X0, const int Y0, const int Z0, const float lmax=100, const float dl = 0.1f, const float FAmin=0.7f, const float cmin=0.5f) {#define align_eigen(i,j,k) \ { T &u = eigen(i,j,k,3), &v = eigen(i,j,k,4), &w = eigen(i,j,k,5); \ if (u*cu+v*cv+w*cw<0) { u=-u; v=-v; w=-w; }} CImgList<> resf; // Forward tracking float normU = 0, normpU = 0, l = 0, X = (float)X0, Y = (float)Y0, Z = (float)Z0; T pu = eigen(X0,Y0,Z0,3), pv = eigen(X0,Y0,Z0,4), pw = eigen(X0,Y0,Z0,5); normpU = (float)std::sqrt(pu*pu+pv*pv+pw*pw); bool stopflag = false; while (!stopflag) { if (X<0 || X>eigen.dimx()-1 || Y<0 || Y>eigen.dimy()-1 || Z<0 || Z>eigen.dimz()-1 || eigen((int)X,(int)Y,(int)Z,12)<FAmin || l>lmax) stopflag = true; else { resf.insert(CImg<>::vector(X,Y,Z)); const int cx = (int)X, px = (cx-1<0)?0:cx-1, nx = (cx+1>=eigen.dimx())?eigen.dimx()-1:cx+1, cy = (int)Y, py = (cy-1<0)?0:cy-1, ny = (cy+1>=eigen.dimy())?eigen.dimy()-1:cy+1, cz = (int)Z, pz = (cz-1<0)?0:cz-1, nz = (cz+1>=eigen.dimz())?eigen.dimz()-1:cz+1; const T cu = eigen(cx,cy,cz,3), cv = eigen(cx,cy,cz,4), cw = eigen(cx,cy,cz,5); align_eigen(px,py,pz); align_eigen(cx,py,pz); align_eigen(nx,py,pz); align_eigen(px,cy,pz); align_eigen(cx,cy,pz); align_eigen(nx,cy,pz); align_eigen(px,ny,pz); align_eigen(cx,ny,pz); align_eigen(nx,ny,pz); align_eigen(px,py,cz); align_eigen(cx,py,cz); align_eigen(nx,py,cz); align_eigen(px,cy,cz); align_eigen(nx,cy,cz); align_eigen(px,ny,cz); align_eigen(cx,ny,cz); align_eigen(nx,ny,cz); align_eigen(px,py,nz); align_eigen(cx,py,nz); align_eigen(nx,py,nz); align_eigen(px,cy,nz); align_eigen(cx,cy,nz); align_eigen(nx,cy,nz); align_eigen(px,ny,nz); align_eigen(cx,ny,nz); align_eigen(nx,ny,nz); const T u0 = 0.5f*dl*eigen.linear_pix3d(X,Y,Z,3), v0 = 0.5f*dl*eigen.linear_pix3d(X,Y,Z,4), w0 = 0.5f*dl*eigen.linear_pix3d(X,Y,Z,5), u1 = 0.5f*dl*eigen.linear_pix3d(X+u0,Y+v0,Z+w0,3), v1 = 0.5f*dl*eigen.linear_pix3d(X+u0,Y+v0,Z+w0,4), w1 = 0.5f*dl*eigen.linear_pix3d(X+u0,Y+v0,Z+w0,5), u2 = 0.5f*dl*eigen.linear_pix3d(X+u1,Y+v1,Z+w1,3), v2 = 0.5f*dl*eigen.linear_pix3d(X+u1,Y+v1,Z+w1,4), w2 = 0.5f*dl*eigen.linear_pix3d(X+u1,Y+v1,Z+w1,5), u3 = 0.5f*dl*eigen.linear_pix3d(X+u2,Y+v2,Z+w2,3), v3 = 0.5f*dl*eigen.linear_pix3d(X+u2,Y+v2,Z+w2,4), w3 = 0.5f*dl*eigen.linear_pix3d(X+u2,Y+v2,Z+w2,5); T u = u0/3 + 2*u1/3 + 2*u2/3 + u3/3, v = v0/3 + 2*v1/3 + 2*v2/3 + v3/3, w = w0/3 + 2*w1/3 + 2*w2/3 + w3/3; if (u*pu+v*pv+w*pw<0) { u=-u; v=-v; w=-w; } normU = (float)std::sqrt(u*u+v*v+w*w); const float scal = (u*pu+v*pv+w*pw)/(normU*normpU); if (scal<cmin) stopflag=true; X+=(pu=u); Y+=(pv=v); Z+=(pw=w); normpU = normU; l+=dl; } } // Backward tracking l = dl; X = (float)X0; Y = (float)Y0; Z = (float)Z0; pu = eigen(X0,Y0,Z0,3); pv = eigen(X0,Y0,Z0,4); pw = eigen(X0,Y0,Z0,5); normpU = (float)std::sqrt(pu*pu+pv*pv+pw*pw); stopflag = false; while (!stopflag) { if (X<0 || X>eigen.dimx()-1 || Y<0 || Y>eigen.dimy()-1 || Z<0 || Z>eigen.dimz()-1 || eigen((int)X,(int)Y,(int)Z,12)<FAmin || l>lmax) stopflag = true; else { const int cx = (int)X, px = (cx-1<0)?0:cx-1, nx = (cx+1>=eigen.dimx())?eigen.dimx()-1:cx+1, cy = (int)Y, py = (cy-1<0)?0:cy-1, ny = (cy+1>=eigen.dimy())?eigen.dimy()-1:cy+1, cz = (int)Z, pz = (cz-1<0)?0:cz-1, nz = (cz+1>=eigen.dimz())?eigen.dimz()-1:cz+1; const T cu = eigen(cx,cy,cz,3), cv = eigen(cx,cy,cz,4), cw = eigen(cx,cy,cz,5); align_eigen(px,py,pz); align_eigen(cx,py,pz); align_eigen(nx,py,pz); align_eigen(px,cy,pz); align_eigen(cx,cy,pz); align_eigen(nx,cy,pz); align_eigen(px,ny,pz); align_eigen(cx,ny,pz); align_eigen(nx,ny,pz); align_eigen(px,py,cz); align_eigen(cx,py,cz); align_eigen(nx,py,cz); align_eigen(px,cy,cz); align_eigen(nx,cy,cz); align_eigen(px,ny,cz); align_eigen(cx,ny,cz); align_eigen(nx,ny,cz); align_eigen(px,py,nz); align_eigen(cx,py,nz); align_eigen(nx,py,nz); align_eigen(px,cy,nz); align_eigen(cx,cy,nz); align_eigen(nx,cy,nz); align_eigen(px,ny,nz); align_eigen(cx,ny,nz); align_eigen(nx,ny,nz); const T u0 = 0.5f*dl*eigen.linear_pix3d(X,Y,Z,3), v0 = 0.5f*dl*eigen.linear_pix3d(X,Y,Z,4), w0 = 0.5f*dl*eigen.linear_pix3d(X,Y,Z,5), u1 = 0.5f*dl*eigen.linear_pix3d(X+u0,Y+v0,Z+w0,3), v1 = 0.5f*dl*eigen.linear_pix3d(X+u0,Y+v0,Z+w0,4), w1 = 0.5f*dl*eigen.linear_pix3d(X+u0,Y+v0,Z+w0,5), u2 = 0.5f*dl*eigen.linear_pix3d(X+u1,Y+v1,Z+w1,3), v2 = 0.5f*dl*eigen.linear_pix3d(X+u1,Y+v1,Z+w1,4), w2 = 0.5f*dl*eigen.linear_pix3d(X+u1,Y+v1,Z+w1,5), u3 = 0.5f*dl*eigen.linear_pix3d(X+u2,Y+v2,Z+w2,3), v3 = 0.5f*dl*eigen.linear_pix3d(X+u2,Y+v2,Z+w2,4), w3 = 0.5f*dl*eigen.linear_pix3d(X+u2,Y+v2,Z+w2,5); T u = u0/3 + 2*u1/3 + 2*u2/3 + u3/3, v = v0/3 + 2*v1/3 + 2*v2/3 + v3/3, w = w0/3 + 2*w1/3 + 2*w2/3 + w3/3; if (u*pu+v*pv+w*pw<0) { u=-u; v=-v; w=-w; } normU = (float)std::sqrt(u*u+v*v+w*w); const float scal = (u*pu+v*pv+w*pw)/(normU*normpU); if (scal<cmin) stopflag=true; X-=(pu=u); Y-=(pv=v); Z-=(pw=w); normpU=normU; l+=dl; resf.insert(CImg<>::vector(X,Y,Z),0); } } return resf.get_append('x');}// Main procedure//----------------int main(int argc,char **argv) { // Read and init data //-------------------- cimg_usage("A viewer of Diffusion-Tensor MRI volumes.");
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -