📄 draft-ietf-xmpp-core-22.txt
字号:
addressed as <room@service> (where "room" is the name of the chat room and "service" is the hostname of the multi-user chat service) and a specific occupant of such a room could be addressed as <room@service/nick> (where "nick" is the occupant's room nickname). Many other JID types are possible (e.g., <domain/resource> could be a server-side script or service). Each allowable portion of a JID (node identifier, domain identifier, and resource identifier) MUST NOT be more than 1023 bytes in length, resulting in a maximum total size (including the '@' and '/' separators) of 3071 bytes.3.2 Domain Identifier The domain identifier is the primary identifier and is the only REQUIRED element of a JID (a mere domain identifier is a valid JID).Saint-Andre (ed.) Expires September 17, 2004 [Page 6]Internet-Draft XMPP Core March 2004 It usually represents the network gateway or "primary" server to which other entities connect for XML routing and data management capabilities. However, the entity referenced by a domain identifier is not always a server, and may be a service that is addressed as a subdomain of a server and that provides functionality above and beyond the capabilities of a server (e.g., a multi-user chat service, a user directory, or a gateway to a foreign messaging system). The domain identifier for every server or service that will communicate over a network MAY be an IP address but SHOULD be a fully qualified domain name (see [DNS]). A domain identifier MUST be an "internationalized domain name" as defined in [IDNA], to which the Nameprep [NAMEPREP] profile of stringprep [STRINGPREP] can be applied without failing. Before comparing two domain identifiers, a server MUST (and a client SHOULD) first apply the Nameprep profile to the labels (as defined in [IDNA]) that make up each identifier.3.3 Node Identifier The node identifier is an optional secondary identifier placed before the domain identifier and separated from the latter by the '@' character. It usually represents the entity requesting and using network access provided by the server or gateway (i.e., a client), although it can also represent other kinds of entities (e.g., a chat room associated with a multi-user chat service). The entity represented by a node identifier is addressed within the context of a specific domain; within instant messaging and presence applications of XMPP this address is called a "bare JID" and is of the form <node@domain>. A node identifier MUST be formatted such that the Nodeprep (Appendix A) profile of [STRINGPREP] can be applied to it without failing. Before comparing two node identifiers, a server MUST (and a client SHOULD) first apply the Nodeprep profile to each identifier.3.4 Resource Identifier The resource identifier is an optional tertiary identifier placed after the domain identifier and separated from the latter by the '/' character. A resource identifier may modify either a <node@domain> or mere <domain> address. It usually represents a specific session, connection (e.g., a device or location), or object (e.g., a participant in a multi-user chat room) belonging to the entity associated with a node identifier. A resource identifier is opaque to both servers and other clients, and is typically defined by a client implementation when it provides the information necessary to complete Resource Binding (Section 7) (although it may be generated by a server on behalf of a client), after which it is referred to asSaint-Andre (ed.) Expires September 17, 2004 [Page 7]Internet-Draft XMPP Core March 2004 a "connected resource". An entity MAY maintain multiple connected resources simultaneously, with each connected resource differentiated by a distinct resource identifier. A resource identifier MUST be formatted such that the Resourceprep (Appendix B) profile of [STRINGPREP] can be applied to it without failing. Before comparing two resource identifiers, a server MUST (and a client SHOULD) first apply the Resourceprep profile to each identifier.3.5 Determination of Addresses After SASL negotiation (Section 6) and, if appropriate, Resource Binding (Section 7), the receiving entity for a stream MUST determine the initiating entity's JID. For server-to-server communications, the initiating entity's JID SHOULD be the authorization identity, derived from the authentication identity as defined by the Simple Authentication and Security Layer (SASL) specification [SASL] if no authorization identity was specified during SASL negotiation (Section 6). For client-to-server communications, the "bare JID" (<node@domain>) SHOULD be the authorization identity, derived from the authentication identity as defined in [SASL] if no authorization identity was specified during SASL negotiation (Section 6); the resource identifier portion of the "full JID" (<node@domain/resource>) SHOULD be the resource identifier negotiated by the client and server during Resource Binding (Section 7). The receiving entity MUST ensure that the resulting JID (including node identifier, domain identifier, resource identifier, and separator characters) conforms to the rules and formats defined earlier in this section; to meet this restriction, the receiving entity may need to replace the JID sent by the initiating entity with the canonicalized JID as determined by the receiving entity.4. XML Streams4.1 Overview Two fundamental concepts make possible the rapid, asynchronous exchange of relatively small payloads of structured information between presence-aware entities: XML streams and XML stanzas. These terms are defined as follows:Saint-Andre (ed.) Expires September 17, 2004 [Page 8]Internet-Draft XMPP Core March 2004 Definition of XML Stream: An XML stream is a container for the exchange of XML elements between any two entities over a network. The start of an XML stream is denoted unambiguously by an opening XML <stream> tag (with appropriate attributes and namespace declarations), while the end of the XML stream is denoted unambiguously by a closing XML </stream> tag. During the life of the stream, the entity that initiated it can send an unbounded number of XML elements over the stream, either elements used to negotiate the stream (e.g., to negotiate use of TLS (Section 5) or use of SASL (Section 6)) or XML stanzas (as defined herein, <message/>, <presence/>, or <iq/> elements qualified by the default namespace). The "initial stream" is negotiated from the initiating entity (usually a client or server) to the receiving entity (usually a server), and can be seen as corresponding to the initiating entity's "session" with the receiving entity. The initial stream enables unidirectional communication from the initiating entity to the receiving entity; in order to enable information exchange from the receiving entity to the initiating entity, the receiving entity MUST negotiate a stream in the opposite direction (the "response stream"). Definition of XML Stanza: An XML stanza is a discrete semantic unit of structured information that is sent from one entity to another over an XML stream. An XML stanza exists at the direct child level of the root <stream/> element and is said to be well-balanced if it matches production [43] content of [XML]. The start of any XML stanza is denoted unambiguously by the element start tag at depth=1 of the XML stream (e.g., <presence>), and the end of any XML stanza is denoted unambiguously by the corresponding close tag at depth=1 (e.g., </presence>). An XML stanza MAY contain child elements (with accompanying attributes, elements, and XML character data) as necessary in order to convey the desired information. The only XML stanzas defined herein are the <message/>, <presence/>, and <iq/> elements qualified by the default namespace for the stream, as described under XML Stanzas (Section 9); an XML element sent for the purpose of Transport Layer Security (TLS) negotiation (Section 5), Simple Authentication and Security Layer (SASL) negotiation (Section 6), or server dialback (Section 8) is not considered to be an XML stanza. Consider the example of a client's session with a server. In order to connect to a server, a client MUST initiate an XML stream by sending an opening <stream> tag to the server, optionally preceded by a text declaration specifying the XML version and the character encoding supported (see Inclusion of Text Declaration (Section 11.4); see also Character Encoding (Section 11.5)). Subject to local policies and service provisioning, the server SHOULD then reply withSaint-Andre (ed.) Expires September 17, 2004 [Page 9]Internet-Draft XMPP Core March 2004 a second XML stream back to the client, again optionally preceded by a text declaration. Once the client has completed SASL negotiation (Section 6), the client MAY send an unbounded number of XML stanzas over the stream to any recipient on the network. When the client desires to close the stream, it simply sends a closing </stream> tag to the server (alternatively, the stream may be closed by the server), after which both the client and server SHOULD terminate the underlying connection (usually a TCP connection) as well. Those who are accustomed to thinking of XML in a document-centric manner may wish to view a client's session with a server as consisting of two open-ended XML documents: one from the client to the server and one from the server to the client. From this perspective, the root <stream/> element can be considered the document entity for each "document", and the two "documents" are built up through the accumulation of XML stanzas sent over the two XML streams. However, this perspective is a convenience only, and XMPP does not deal in documents but in XML streams and XML stanzas. In essence, then, an XML stream acts as an envelope for all the XML stanzas sent during a session. We can represent this in a simplistic fashion as follows: |--------------------| | <stream> | |--------------------| | <presence> | | <show/> | | </presence> | |--------------------| | <message to='foo'> | | <body/> | | </message> | |--------------------| | <iq to='bar'> | | <query/> | | </iq> | |--------------------| | ... | |--------------------| | </stream> | |--------------------|4.2 Binding to TCP Although there is no necessary coupling of an XML stream to a [TCP] connection (e.g., two entities could connect to each other viaSaint-Andre (ed.) Expires September 17, 2004 [Page 10]Internet-Draft XMPP Core March 2004 another mechanism such as polling over [HTTP]), this specification defines a binding of XMPP to TCP only. In the context of client-to-server communications, a server MUST allow a client to share a single TCP connection for XML stanzas sent from client to server and from server to client. In the context of server-to-server communications, a server MUST use one TCP connection for XML stanzas sent from the server to the peer and another TCP connection (initiated by the peer) for stanzas from the peer to the server, for a total of two TCP connections.4.3 Stream Security When negotiating XML streams in XMPP 1.0, TLS SHOULD be used as defined under Use of TLS (Section 5) and SASL MUST be used as defined under Use of SASL (Section 6). The "initial stream" (i.e., the stream from the initiating entity to the receiving entity) and the "response stream" (i.e., the stream from the receiving entity to the initiating entity) MUST be secured separately, although security in both directions MAY be established via mechanisms that provide mutual authentication. An entity SHOULD NOT attempt to send XML Stanzas (Section 9) over the stream before the stream has been authenticated, but if it does then the other entity MUST NOT accept such stanzas and SHOULD return a <not-authorized/> stream error and then terminate both the XML stream and the underlying TCP connection; note well that this applies to XML stanzas only (i.e., <message/>, <presence/>, and <iq/> elements scoped by the default namespace) and not to XML elements used for stream negotiation (e.g., elements used to negotiate use of TLS (Section 5) or Use of SASL (Section 6)).4.4 Stream Attributes The attributes of the stream element are as follows: o to -- The 'to' attribute SHOULD be used only in the XML stream header from the initiating entity to the receiving entity, and MUST be set to a hostname serviced by the receiving entity. There SHOULD NOT be a 'to' attribute set in the XML stream header by which the receiving entity replies to the initiating entity; however, if a 'to' attribute is included, it SHOULD be silently ignored by the initiating entity. o from -- The 'from' attribute SHOULD be used only in the XML stream header from the receiving entity to the initiating entity, and MUST be set to a hostname serviced by the receiving entity that is granting access to the initiating entity. There SHOULD NOT be a 'from' attribute on the XML stream header sent from the initiating entity to the receiving entity; however, if a 'from' attribute is included, it SHOULD be silently ignored by the receiving entity.Saint-Andre (ed.) Expires September 17, 2004 [Page 11]Internet-Draft XMPP Core March 2004 o id -- The 'id' attribute SHOULD be used only in the XML stream header from the receiving entity to the initiating entity. This attribute is a unique identifier created by the receiving entity to function as a session key for the initiating entity's streams with the receiving entity, and MUST be unique within the receiving application (normally a server). Note well that the stream ID may be security-critical and therefore MUST be both unpredictable and nonrepeating (see [RANDOM] for recommendations regarding randomness for security purposes). There SHOULD NOT be an 'id' attribute on the XML stream header sent from the initiating entity to the receiving entity; however, if an 'id' attribute is
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -