📄 ex761.m
字号:
%----------------------------------------------------------------------------%
% Example 7.6.1
% to solve transient response of 1-d bar structure
%
% Problem description
% Find the dynamic behavior of a bar structure,
% as shown in Fig. 7.6.1, subjected to a step
% force function at the right end.
%
% Variable descriptions
% k = element stiffness matrix
% m = element mass matrix
% kk = system stiffness matrix
% mm = system mass vector
% ff = system force vector
% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix
% prop = element property matrix
% nodes = nodal connectivity matrix for each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in 'bcdof'
%----------------------------------------------------------------------------%
%---------------------------
% control input data
%---------------------------
clear
nel=10; % number of elements
nnel=2; % number of nodes per element
ndof=1; % number of dofs per node
nnode=11; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
dt=0.0001; % time step size
ti=0; % initial time
tf=0.05; % final time
nt=fix((tf-ti)/dt); % number of time steps
%---------------------------
% nodal coordinates
%---------------------------
gcoord(1,1)=0.0;
gcoord(2,1)=1.0;
gcoord(3,1)=2.0;
gcoord(4,1)=3.0;
gcoord(5,1)=4.0;
gcoord(6,1)=5.0;
gcoord(7,1)=6.0;
gcoord(8,1)=7.0;
gcoord(9,1)=8.0;
gcoord(10,1)=9.0;
gcoord(11,1)=10.0;
%------------------------------------------
% material and geometric properties
%------------------------------------------
prop(1)=200e9; % elastic modulus
prop(2)=0.001; % cross-sectional area
prop(3)=7860; % density
%-----------------------------
% nodal connectivity
%-----------------------------
nodes(1,1)=1; nodes(1,2)=2;
nodes(2,1)=2; nodes(2,2)=3;
nodes(3,1)=3; nodes(3,2)=4;
nodes(4,1)=4; nodes(4,2)=5;
nodes(5,1)=5; nodes(5,2)=6;
nodes(6,1)=6; nodes(6,2)=7;
nodes(7,1)=7; nodes(7,2)=8;
nodes(8,1)=8; nodes(8,2)=9;
nodes(9,1)=9; nodes(9,2)=10;
nodes(10,1)=10; nodes(10,2)=11;
%-----------------------------
% applied constraints
%-----------------------------
nbc=1; % number of constraints
bcdof(1)=1; % 1st dof is constrained
%----------------------------
% initialization to zero
%----------------------------
kk=zeros(sdof,sdof); % system stiffness matrix
mm=zeros(sdof,sdof); % system mass matrix
ff=zeros(sdof,1); % system force vector
index=zeros(nnel*ndof,1); % index vector
acc=zeros(sdof,nt); % acceleartion matrix
vel=zeros(sdof,nt); % velocity matrix
disp=zeros(sdof,nt); % displacement matrix
%--------------------------
% loop for elements
%--------------------------
for iel=1:nel % loop for the total number of elements
nd(1)=nodes(iel,1); % 1st connected node for the (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for the (iel)-th element
x1=gcoord(nd(1),1); % coordinate of 1st node
x2=gcoord(nd(2),1); % coordinate of 2nd node
leng=(x2-x1); % element length
el=prop(1); % extract elastic modulus
area=prop(2); % extract cross-sectional area
rho=prop(3); % extract mass density
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
ipt=1; % flag for consistent mass matrix
[k,m]=fetruss1(el,leng,area,rho,ipt); % element matrix
kk=feasmbl1(kk,k,index); % assemble system stiffness matrix
mm=feasmbl1(mm,m,index); % assemble system mass matrix
end
%-------------------------------
% initial condition
%-------------------------------
vel(:,1)=zeros(sdof,1); % initial zero velocity
disp(:,1)=zeros(sdof,1); % initial zero displacement
ff(11)=200; % step force at node 11
%--------------------------------------------------------
% central difference scheme for time integration
%--------------------------------------------------------
mm=inv(mm); % invert the mass matrix
for it=1:nt
acc(:,it)=mm*(ff-kk*disp(:,it));
for i=1:nbc
ibc=bcdof(i);
acc(ibc,it)=0;
end
vel(:,it+1)=vel(:,it)+acc(:,it)*dt;
disp(:,it+1)=disp(:,it)+vel(:,it+1)*dt;
end
acc(:,nt+1)=mm*(ff-kk*disp(:,nt+1));
time=0:dt:nt*dt;
plot(time,disp(11,:))
xlabel('Time(seconds)')
ylabel('Tip displ. (m)')
%---------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -