📄 ex1281.m
字号:
%----------------------------------------------------------------------------%
% Example 12.8.1 %
% to find the critical buckling loads of of a simply supported %
% beam using Hermitian beam elements % %
% %
% Variable descriptions %
% k = element stiffness matrix %
% m = element mass matrix %
% kk = system stiffness matrix %
% mm = system mass matrix %
% index = a vector containing system dofs associated with each element %
% bcdof = a vector containing dofs associated with boundary conditions %
% bcval = a vector containing boundary condition values associated with %
% the dofs in 'bcdof' %
%----------------------------------------------------------------------------%
clear
nel=4; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofs per node
nnode=(nnel-1)*nel+1; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
el=12; % elastic modulus
xi=1/12; % moment of inertia of cross-section
tleng=1; % total length of the beam
leng=tleng/nel; % uniform mesh (equal size of elements)
kk=zeros(sdof,sdof); % initialization of system stiffness matrix
kkg=zeros(sdof,sdof); % initialization of system geomtric matrix
index=zeros(nel*ndof,1); % initialization of index vector
bcdof(1)=1; % deflection at node 1 is constrained
bcdof(2)=sdof-1; % deflection at the last node is constrained
for iel=1:nel % loop for the total number of elements
index=feeldof1(iel,nnel,ndof); % extract system dofs associated with element
[k,m]=febeam1(el,xi,leng,0,0,1); % compute element stiffness & mass matrix
[kg,kef]=febeambk(leng,0); % compute geometric stiffness matrix
kk=feasmbl1(kk,k,index); % assemble element stiffness matrices into system matrix
kkg=feasmbl1(kkg,kg,index); % assemble geometric matrices into system matrix
end
[kk,kkg]=feaplycs(kk,kkg,bcdof); % apply constraints
fsol=eig(kk,kkg) % solve the eigenvalue problem
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -