📄 ex5112.m
字号:
%----------------------------------------------------------------------------
% EX5.11.2.m
% to solve the transient two-dimensional Laplace's equation
% u,t = u,xx + u,yy , 0 < x < 5, 0 < y < 2
% boundary conditions:
% u(0,y,t) = 100, u(5,y,t) = 100,
% u,y(x,0,t) = 0, u,y(x,2,t) = 0
% initial condition:
% u(x,y,0) = 0 over the domain
% using bilinear rectangular elements and forward difference method
%(see Fig. 5.11.1 for the finite element mesh except for
% 8 rectangular elements instead of 16 triangular elements)
%
% Variable descriptions
% k = element matrix for time-independent term (u,xx + u,yy)
% m = element matrix for time-dependent term (u,t)
% f = element vector
% kk = system matrix of k
% mm = system matrix of m
% ff = system vector
% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in 'bcdof'
%----------------------------------------------------------------------------
clear
%------------------------------------
% input data for control parameters
%------------------------------------
nel=8; % number of elements
nnel=4; % number of nodes per element
ndof=1; % number of dofs per node
nnode=15; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
deltt=0.1; % time step size for transient analysis
stime=0.0; % initial time
ftime=10; % termination time
ntime=fix((ftime-stime)/deltt); % number of time increment
%---------------------------------------------
% input data for nodal coordinate values
% gcoord(i,j) where i->node no. and j->x or y
%---------------------------------------------
gcoord(1,1)=0.0; gcoord(1,2)=0.0; gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gcoord(3,2)=0.0; gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0; gcoord(6,1)=0.0; gcoord(6,2)=1.0;
gcoord(7,1)=1.25; gcoord(7,2)=1.0; gcoord(8,1)=2.5; gcoord(8,2)=1.0;
gcoord(9,1)=3.75; gcoord(9,2)=1.0; gcoord(10,1)=5.0; gcoord(10,2)=1.0;
gcoord(11,1)=0.0; gcoord(11,2)=2.0; gcoord(12,1)=1.25; gcoord(12,2)=2.0;
gcoord(13,1)=2.5; gcoord(13,2)=2.0; gcoord(14,1)=3.75; gcoord(14,2)=2.0;
gcoord(15,1)=5.0; gcoord(15,2)=2.0;
%---------------------------------------------------------
% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes
%---------------------------------------------------------
nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=7; nodes(1,4)=6;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=7;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;
nodes(4,1)=4; nodes(4,2)=5; nodes(4,3)=10; nodes(4,4)=9;
nodes(5,1)=6; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=11;
nodes(6,1)=7; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,1)=8; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,1)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
%-------------------------------------
% input data for boundary conditions
%-------------------------------------
bcdof(1)=1; % first node is constrained
bcval(1)=100; % whose described value is 0
bcdof(2)=5; % second node is constrained
bcval(2)=100; % whose described value is 0
bcdof(3)=6; % third node is constrained
bcval(3)=100; % whose described value is 0
bcdof(4)=10; % 4th node is constrained
bcval(4)=100; % whose described value is 0
bcdof(5)=11; % 5th node is constrained
bcval(5)=100; % whose described value is 0
bcdof(6)=15; % 6th node is constrained
bcval(6)=100; % whose described value is 0
%-----------------------------------------
% initialization of matrices and vectors
%-----------------------------------------
ff=zeros(sdof,1); % initialization of system vector
fn=zeros(sdof,1); % initialization of effective system vector
fsol=zeros(sdof,1); % solution vector
sol=zeros(2,ntime+1); % vector containing time history solution
kk=zeros(sdof,sdof); % initialization of system matrix
mm=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%-----------------------------------------------------------------
% computation of element matrices and vectors and their assembly
%-----------------------------------------------------------------
for iel=1:nel % loop for the total number of elements
nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
nd(4)=nodes(iel,3); % 4th connected node for (iel)-th element
x1=gcoord(nd(1),1); y1=gcoord(nd(1),2);% coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2);% coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2);% coord values of 3rd node
x4=gcoord(nd(4),1); y4=gcoord(nd(4),2);% coord values of 4th node
xleng=x2-x1; % element size in x-axis
yleng=y4-y1; % element size in y-axis
index=feeldof(nd,nnel,ndof);% extract system dofs associated with element
k=felp2dr4(xleng,yleng); % compute element matrix (time-independent term)
m=felpt2r4(xleng,yleng); % compute element matrix (time-dependent term)
kk=feasmbl1(kk,k,index); % assemble element matrices
mm=feasmbl1(mm,m,index); % assemble element matrices
end
%-----------------------------
% loop for time integration
%-----------------------------
for in=1:sdof
fsol(in)=0.0; % initial condition
end
sol(1,1)=fsol(8); % store time history solution for node no. 8
sol(2,1)=fsol(9); % store time history solution for node no. 9
for it=1:ntime % start loop for time integration
fn=deltt*ff+(mm-deltt*kk)*fsol; % compute effective column vector
[mm,fn]=feaplyc2(mm,fn,bcdof,bcval); % apply boundary condition
fsol=mm\fn; % solve the matrix equation
sol(1,it+1)=fsol(8); % store time history solution for node no. 8
sol(2,it+1)=fsol(9); % store time history solution for node no. 9
end
%-----------------------------------
% analytical solution at node 8
%-----------------------------------
pi=4*atan(1);
esol=zeros(1,ntime+1);
ii=0;
for ti=0:deltt:ntime*deltt;
ii=ii+1;
for i=1:2:100
esol(ii)=esol(ii)+(1/i)*exp(-i*i*pi*pi*ti/25)*sin(i*pi/2);
end
end
esol=100-(100*4/pi)*esol;
%------------------------------------
% plot the solution at nodes 8 and 9
%------------------------------------
time=0:deltt:ntime*deltt;
plot(time,sol(1,:),'*',time,esol,'-');
xlabel('Time')
ylabel('Solution at nodes')
%---------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -