⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qconvex.htm

📁 DT三角化实现
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<title>qconvex -- convex hull</title>
</head>

<body>
<!-- Navigation links -->
<a name="TOP"><b>Up</b></a><b>:</b> 
<a href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a> -- Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
&#149; <a href="qh-quick.htm#options">Options</a> 
&#149; <a href="qh-opto.htm#output">Output</a> 
&#149; <a href="qh-optf.htm#format">Formats</a> 
&#149; <a href="qh-optg.htm#geomview">Geomview</a> 
&#149; <a href="qh-optp.htm#print">Print</a>
&#149; <a href="qh-optq.htm#qhull">Qhull</a> 
&#149; <a href="qh-optc.htm#prec">Precision</a> 
&#149; <a href="qh-optt.htm#trace">Trace</a><br>
<b>To:</b> <a href="#synopsis">sy</a>nopsis 
&#149; <a href="#input">in</a>put &#149; <a href="#outputs">ou</a>tputs 
&#149; <a href="#controls">co</a>ntrols &#149; <a href="#graphics">gr</a>aphics 
&#149; <a href="#notes">no</a>tes &#149; <a href="#conventions">co</a>nventions 
&#149; <a href="#options">op</a>tions
<hr>
<!-- Main text of document -->
<h1><a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
src="qh--cone.gif" alt="[cone]" align="middle" width="100"
height="100"></a>qconvex -- convex hull</h1>

<p>The convex hull of a set of points is the smallest convex set
containing the points. See the detailed introduction by O'Rourke
[<a href="index.htm#orou94">'94</a>]. See <a
href="index.htm#description">Description of Qhull</a> and <a
href="qh-eg.htm#how">How Qhull adds a point</a>.</p>

<blockquote>
<dl>
    <dt><b>Example:</b> rbox 10 D3 | qconvex <a
        href="qh-opto.htm#s">s</a> <a href="qh-opto.htm#o">o</a> <a
        href="qh-optt.htm#TO">TO result</a></dt>
    <dd>Compute the 3-d convex hull of 10 random points. Write a
        summary to the console and the points and facets to
        'result'.</dd>

        <dt>&nbsp;</dt>
            <dt><b>Example:</b> rbox c | qconvex <a
                href="qh-opto.htm#n">n</a></dt>
            <dd>Print the normals for each facet of a cube.</dd>
            <dt>&nbsp;</dt>
            <dt><b>Example:</b> rbox c | qconvex <a
                href="qh-opto.htm#i">i</a> <a href="qh-optq.htm#Qt">Qt</a></dt>
            <dd>Print the triangulated facets of a cube.</dd>
            <dt>&nbsp;</dt>
            <dt><b>Example:</b> rbox y 500 W0 | qconvex</dt>
            <dd>Compute the convex hull of a simplex with 500
                points on its surface.</dd>
            <dt>&nbsp;</dt>
            <dt><b>Example:</b> rbox x W1e-12 1000 | qconvex
            <a href="qh-optq.htm#QR">QR0</a></dt>
        <dd>Compute the convex hull of 1000 points near the
		    surface of a randomly rotated simplex.  Report
			the maximum thickness of a facet.</dd>
            <dt>&nbsp;</dt>
       <dt><b>Example:</b> rbox 1000 s | qconvex <a
            href="qh-opto.htm#s">s</a> <a
            href="qh-optf.htm#FA">FA</a> </dt>
        <dd>Compute the convex hull of 1000 cospherical
            points. Verify the results and print a summary
            with the total area and volume.</dd>
        <dt>&nbsp;</dt>
            <dt><b>Example:</b> rbox d D12 | qconvex <a
                href="qh-optq.htm#QRn">QR0</a> <a
                href="qh-optf.htm#FA">FA</a></dt>
            <dd>Compute the convex hull of a 12-d diamond.
                Randomly rotate the input. Note the large number
                of facets and the small volume.</dd>
            <dt>&nbsp;</dt>
            <dt><b>Example:</b> rbox c D7 | qconvex <a
                href="qh-optf.htm#FA">FA</a> <a
                href="qh-optt.htm#TFn">TF1000</a></dt>
            <dd>Compute the convex hull of the 7-d hypercube.
                Report on progress every 1000 facets. Computing
                the convex hull of the 9-d hypercube takes too
                much time and space. </dd>
            <dt>&nbsp;</dt>
        <dt><b>Example:</b> rbox c d D2 | qconvex <a
            href="qh-optq.htm#Qc">Qc</a> <a
            href="qh-opto.htm#s">s</a> <a
            href="qh-opto.htm#f">f</a> <a
            href="qh-optf.htm#Fx">Fx</a> | more</dt>
        <dd>Dump all fields of all facets for a square and a
            diamond. Also print a summary and a list of
            vertices. Note the coplanar points.</dd>
        <dt>&nbsp;</dt>
</dl>
</blockquote>

<p>Except for rbox, all of the qhull programs compute a convex hull. 

<p>By default, Qhull merges coplanar facets.  For example, the convex
hull of a cube's vertices has six facets.

<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output), 
all facets will be simplicial (e.g., triangles in 2-d).  For the cube 
example, it will have 12 facets.  Some facets may be
degenerate and have zero area. 

<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input), 
all facets will be simplicial.  The corresponding vertices will be
slightly perturbed and identical points will be joggled apart.  
Joggled input is less accurate that triangulated
output.See <a
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>

<p>The output for 4-d convex hulls may be confusing if the convex
hull contains non-simplicial facets (e.g., a hypercube). See
<a href=qh-faq.htm#extra>Why
are there extra points in a 4-d or higher convex hull?</a><br>
</p>
</p>

<p>The 'qconvex' program is equivalent to 
'<a href=qhull.htm#outputs>qhull</a>' in 2-d to 4-d, and
'<a href=qhull.htm#outputs>qhull</a> <a href=qh-optq.htm#Qx>Qx</a>' 
in 5-d and higher.  It disables the following Qhull
<a href=qh-quick.htm#options>options</a>: <i>d v H Qbb Qf Qg Qm 
Qr Qu Qv Qx Qz TR E V Fp Gt Q0,etc</i>.

<p><b>Copyright &copy; 1995-2003 The Geometry Center, Minneapolis MN</b></p>

<hr>

<h3><a href="#TOP">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -