⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qdelaun.htm

📁 DT三角化实现
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<title>qdelaunay -- Delaunay triangulation</title>
</head>

<body>
<!-- Navigation links -->
<a name="TOP"><b>Up</b></a><b>:</b> 
<a href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
&#149; <a href="qh-quick.htm#options">Options</a> 
&#149; <a href="qh-opto.htm#output">Output</a> 
&#149; <a href="qh-optf.htm#format">Formats</a> 
&#149; <a href="qh-optg.htm#geomview">Geomview</a> 
&#149; <a href="qh-optp.htm#print">Print</a>
&#149; <a href="qh-optq.htm#qhull">Qhull</a> 
&#149; <a href="qh-optc.htm#prec">Precision</a> 
&#149; <a href="qh-optt.htm#trace">Trace</a><br>
<b>To:</b> <a href="#synopsis">sy</a>nopsis 
&#149; <a href="#input">in</a>put &#149; <a href="#outputs">ou</a>tputs 
&#149; <a href="#controls">co</a>ntrols &#149; <a href="#graphics">gr</a>aphics 
&#149; <a href="#notes">no</a>tes &#149; <a href="#conventions">co</a>nventions 
&#149; <a href="#options">op</a>tions

<hr>
<!-- Main text of document -->
<h1><a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
height="100"></a>qdelaunay -- Delaunay triangulation</h1>

<p>The Delaunay triangulation is the triangulation with empty
circumspheres. It has many useful properties and applications.
See the survey article by Aurenhammer [<a
href="index.htm#aure91">'91</a>] and the detailed introduction
by O'Rourke [<a href="index.htm#orou94">'94</a>]. </p>

<blockquote>
<dl>
    <dt><b>Example:</b> rbox r y c G0.1 D2 | qdelaunay <a href="qh-opto.htm#s">s</a>
        <a href="qh-optf.htm#Fv">Fv</a> <a href="qh-optt.htm#TO">TO
        result</a></dt>
    <dd>Compute the 2-d Delaunay triangulation of a triangle and
        a small square.
        Write a summary to the console and unoriented regions to 'result'.
        Merge regions for cocircular input sites (i.e., the
        square).</dd>
    <dt>&nbsp;</dt>
    <dt><b>Example:</b> rbox r y c G0.1 D2 | qdelaunay <a href="qh-opto.htm#s">s</a>
        <a href="qh-optf.htm#Fv">Fv</a> <a href="qh-optq.htm#Qt">Qt</a></dt>
    <dd>Compute the 2-d Delaunay triangulation of a triangle and
        a small square. Write a summary and unoriented 
	regions to the console.  Produce triangulated output.</dd>
    <dt>&nbsp;</dt>
    <dt><b>Example:</b> rbox 10 D2 | qdelaunay <a
        href="qh-optq.htm#QJn">QJ</a> <a href="qh-opto.htm#s">s</a>
        <a href="qh-opto.htm#i">i</a> <a href="qh-optt.htm#TO">TO
        result</a></dt>
    <dd>Compute the 2-d Delaunay triangulation of 10 random
        points. Joggle the input to guarantee triangular output.
        Write a summary to the console and the regions to
        'result'.</dd>
</dl>
</blockquote>

<p>Qhull computes the Delaunay triangulation by computing a
convex hull. It lifts the input sites to a paraboloid by adding
the sum of the squares of the coordinates. It scales the height
of the paraboloid to improve numeric precision ('<a href=qh-optq.htm#Qbb>Qbb</a>').
It computes the convex
hull of the lifted sites, and projects the lower convex hull to
the input. 

<p>Each region of the Delaunay triangulation
corresponds to a facet of the lower half of the convex hull.
Facets of the upper half of the convex hull correspond to the <a
href="qdelau_f.htm">furthest-site Delaunay triangulation</a>.
See the examples, <a href="qh-eg.htm#delaunay">Delaunay and
Voronoi diagrams</a>.</p>

<p>See <a href="http://www.qhull.org/html/qh-faq.htm#TOC">Qhull FAQ</a> - Delaunay and
Voronoi diagram questions.</p>

<p>By default, qdelaunay merges cocircular and cospherical regions.
For example, the Delaunay triangulation of a square inside a diamond
('rbox D2 c d G4 | qdelaunay') contains one region for the square.
It identifies coincident points.

<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output), 
all Delaunay regions will be simplicial (e.g., triangles in 2-d).  
Some regions may be
degenerate and have zero area.  Triangulated output identifies coincident
points.

<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input), all Delaunay regions 
will be simplicial (e.g., triangles in 2-d).  Coincident points will 
create small regions since the points are joggled apart.  Joggled input
is less accurate than triangulated output ('Qt').  See <a
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>

<p>The output for 3-d Delaunay triangulations may be confusing if the 
input contains cospherical data.  See the FAQ item
<a href=qh-faq.htm#extra>Why
are there extra points in a 4-d or higher convex hull?</a> 
Avoid these problems with triangulated output ('<a href="qh-optq.htm#Qt">Qt</a>') or
joggled input ('<a href="qh-optq.htm#QJn">QJ</a>').
</p>

<p>The 'qdelaunay' program is equivalent to 
'<a href=qhull.htm#outputs>qhull d</a> <a href=qh-optq.htm#Qbb>Qbb</a>' in 2-d to 3-d, and
'<a href=qhull.htm#outputs>qhull d</a> <a href=qh-optq.htm#Qbb>Qbb</a> <a href=qh-optq.htm#Qx>Qx</a>' 
in 4-d and higher.  It disables the following Qhull
<a href=qh-quick.htm#options>options</a>: <i>d n v H U Qb QB Qc Qf Qg Qi
Qm Qr QR Qv Qx TR E V FC Fi Fo Fp Ft FV Q0,etc</i>.


<p><b>Copyright &copy; 1995-2003 The Geometry Center, Minneapolis MN</b></p>

<hr>

<h3><a href="#TOP">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -