⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qhull.htm

📁 DT三角化实现
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<title>qhull -- convex hull and related structures</title>
</head>

<body>
<!-- Navigation links -->
<p><b><a name="TOP">Up</a></b><b>:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
&#149; <a href="qh-quick.htm#options">Options</a> 
&#149; <a href="qh-opto.htm#output">Output</a> 
&#149; <a href="qh-optf.htm#format">Formats</a> 
&#149; <a href="qh-optg.htm#geomview">Geomview</a> 
&#149; <a href="qh-optp.htm#print">Print</a>
&#149; <a href="qh-optq.htm#qhull">Qhull</a> 
&#149; <a href="qh-optc.htm#prec">Precision</a> 
&#149; <a href="qh-optt.htm#trace">Trace</a><br>
<b>To:</b> <a href="#synopsis">sy</a>nopsis &#149; <a href="#input">in</a>put 
&#149; <a href="#outputs">ou</a>tputs &#149; <a href="#controls">co</a>ntrols 
&#149; <a href="#options">op</a>tions
<hr>
<!-- Main text of document -->
<h1><a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
src="qh--cone.gif" alt="[cone]" align="middle" width="100"
height="100"></a>qhull -- convex hull and related structures</h1>

<p>The convex hull of a set of points is the smallest convex set
containing the points.  The Delaunay triangulation and furthest-site
Delaunay triangulation are equivalent to a convex hull in one
higher dimension.  Halfspace intersection about a point is 
equivalent to a convex hull by polar duality.

<p>The <tt>qhull</tt> program provides options to build these
structures and to experiment with the process.  Use the 
<a href=qconvex.htm>qconvex</a>,
<a href=qdelaun.htm>qdelaunay</a>, <a href=qhalf.htm>qhalf</a>, 
and <a href=qvoronoi.htm>qvoronoi</a> programs
to build specific structures.  You may use <tt>qhull</tt> instead.
It takes the same options and uses the same code.  
<blockquote>
<dl>
    <dt><b>Example:</b> rbox 1000 D3 | qhull 
	 <a href="qh-optc.htm#Cn">C-1e-4</a> 
	 <a href="qh-optf.htm#FO">FO</a>
	 <a href="qh-optt.htm#Ts">Ts</a>
	 </dt>
    <dd>Compute the 3-d convex hull of 1000 random
	     points.  
		 Centrums must be 10^-4 below neighboring
		 hyperplanes.  Print the options and precision constants.
		 When done, print statistics.  These options may be
		 used with any of the Qhull programs.</dd>
    <dt>&nbsp;</dt>
    <dt><b>Example:</b> rbox 1000 D3 | qhull <a href=qhull.htm#outputs>d</a>
	 <a href="qh-optq.htm#Qbb">Qbb</a>
	 <a href="qh-optc.htm#Rn">R1e-4</a> 
	 <a href="qh-optq.htm#Q0">Q0</a></dt>
    <dd>Compute the 3-d Delaunay triangulation of 1000 random
	     points.  Randomly perturb all calculations by
		 [0.9999,1.0001].  Do not correct precision problems.
		 This leads to serious precision errors.</dd>
</dl>
</blockquote>
<p>Use the following equivalences when calling <tt>qhull</tt> in 2-d to 4-d (a 3-d
Delaunay triangulation is a 4-d convex hull):
<blockquote>
<ul>
<li>
<a href="qconvex.htm">qconvex</a> == qhull
<li>
<a href=qdelaun.htm>qdelaunay</a> == qhull d <a href="qh-optq.htm#Qbb">Qbb</a>
<li>
<a href=qhalf.htm>qhalf</a> == qhull H
<li>
<a href=qvoronoi.htm>qvoronoi</a> == qhull v <a href="qh-optq.htm#Qbb">Qbb</a>
</ul>
</blockquote>

<p>Use the following equivalences when calling <tt>qhull</tt> in 5-d and higher (a 4-d
Delaunay triangulation is a 5-d convex hull):
<blockquote>
<ul>
<li>
<a href="qconvex.htm">qconvex</a> == qhull <a href="qh-optq.htm#Qx">Qx</a>
<li>
<a href=qdelaun.htm>qdelaunay</a> == qhull d <a href="qh-optq.htm#Qbb">Qbb</a> <a href="qh-optq.htm#Qx">Qx</a>
<li>
<a href=qhalf.htm>qhalf</a> == qhull H <a href="qh-optq.htm#Qx">Qx</a>
<li>
<a href=qvoronoi.htm>qvoronoi</a> == qhull v <a href="qh-optq.htm#Qbb">Qbb</a> <a href="qh-optq.htm#Qx">Qx</a>
</ul>
</blockquote>


<p>By default, Qhull merges coplanar facets.  For example, the convex
hull of a cube's vertices has six facets.

<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output), 
all facets will be simplicial (e.g., triangles in 2-d).  For the cube 
example, it will have 12 facets.  Some facets may be
degenerate and have zero area. 

<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input), 
all facets will be simplicial.  The corresponding vertices will be
slightly perturbed.  Joggled input is less accurate that triangulated
output.See <a
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>

<p>The output for 4-d convex hulls may be confusing if the convex
hull contains non-simplicial facets (e.g., a hypercube). See
<a href=qh-faq.htm#extra>Why
are there extra points in a 4-d or higher convex hull?</a><br>
</p>

<p><b>Copyright &copy; 1995-2003 The Geometry Center, Minneapolis MN</b></p>

<hr>

<h3><a href="#TOP">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -