📄 ofdm_fading_new.m
字号:
% Program 4-2
% ofdm_fading.m
%
% Simulation program to realize OFDM transmission system
% (under one path fading)
%
% programmed by T.Yamamura and H.Harada
%
%********************** preparation part ***************************
clear;
para=2048; % Number of parallel channel to transmit (points)
fftlen=2048; % FFT length
noc=2048; % Number of carrier
nd=10; % Number of information OFDM symbol for one loop
ml=2; % Modulation level : QPSK
sr=250000; % Symbol rate
br=sr.*ml; % Bit rate per carrier
gilen=64; % Length of guard interval (points)
ebn0=0:2:10; % Eb/N0
ebn01=0:0.1:10;
%******************* Fading initialization ********************
% If you use fading function "sefade", you can initialize all of parameters.
% Otherwise you can comment out the following initialization.
% The detailed explanation of all of valiables are mentioned in Program 2-8.
% Time resolution
tstp=1/sr/(fftlen+gilen);
% Arrival time for each multipath normalized by tstp
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
itau = [0];
% Mean power for each multipath normalized by direct wave.
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
dlvl = [0];
% Number of waves to generate fading for each multipath.
% In normal case, more than six waves are needed to generate Rayleigh fading
n0=[6];
% Initial Phase of delayed wave
% In this simulation 20-path Rayleigh fading are considered.
th1=[0];
% Number of fading counter to skip
itnd0=nd*(fftlen+gilen)*10;
% Initial value of fading counter
% In this simulation one-path Rayleigh fading are considered.
% Therefore one fading counter are needed.
itnd1=[1000];
% Number of directwave + Number of delayed wave
% In this simulation one-path Rayleigh fading are considered
now1=1;
% Maximum Doppler frequency [Hz]
% You can insert your favorite value
fd=320;
% You can decide two mode to simulate fading by changing the variable flat
% flat : flat fading or not
% (1->flat (only amplitude is fluctuated),0->nomal(phase and amplitude are fluctutated)
flat =0;
%************************** main loop part **************************
for j=1:length(ebn0)
nloop=10; % Number of simulation loops
noee=0;
noe = 0; % Number of error data
nod = 0; % Number of transmitted data
eop=0; % Number of error packet
eopp=0;
nop=0; % Number of transmitted packet
nopp=0;
nodd=0;
for iii=1:nloop
%************************** transmitter *********************************
%************************** Data generation ****************************
seldata=rand(1,para*nd*ml)>0.5; % rand : built in function
%****************** Serial to parallel conversion ***********************
paradata=reshape(seldata,para,nd*ml); % reshape : built in function
%************************** QPSK modulation *****************************
[ich,qch]=qpskmod(paradata,para,nd,ml);
kmod=1/sqrt(2); % sqrt : built in function
ich1=ich.*kmod;
qch1=qch.*kmod;
%******************* IFFT ************************
x=ich1+qch1.*i;
y=ifft(x); % ifft : built in function
ich2=real(y); % real : built in function
qch2=imag(y); % imag : built in function
%********* Gurad interval insertion **********
[ich3,qch3]= giins(ich2,qch2,fftlen,gilen,nd);
fftlen2=fftlen+gilen;
%********* Attenuation Calculation *********
spow=sum(ich3.^2+qch3.^2)/nd./para; % sum : built in function
attn=0.5*spow*sr/br*10.^(-ebn0(j)/10);
attn=sqrt(attn);
%********************** Fading channel **********************
% Generated data are fed into a fading simulator
[ifade,qfade]=sefade(ich3,qch3,itau,dlvl,th1,n0,itnd1,now1,length(ich3),tstp,fd,flat);
% Updata fading counter
itnd1 = itnd1+ itnd0;
%*************************** Receiver *****************************
%***************** AWGN addition *********
[ich4,qch4]=comb(ifade,qfade,attn);
[ich44,qch44]=comb(ich3,qch3,attn);
%****************** Guard interval removal *********
[ich5,qch5]= girem(ich4,qch4,fftlen2,gilen,nd);
[ich55,qch55]=girem(ich44,qch44,fftlen2,gilen,nd);
%****************** FFT ******************
rx=ich5+qch5.*i;
rxx=ich55+qch55.*i;
ry=fft(rx); % fft : built in function
ryy=fft(rxx);
ich6=real(ry); % real : built in function
qch6=imag(ry); % imag : built in function
ich66=real(ryy);
qch66=imag(ryy);
%***************** demoduration *******************
ich77=ich66./kmod;
qch77=qch66./kmod;
ich7=ich6./kmod;
qch7=qch6./kmod;
[demodata]=qpskdemod(ich7,qch7,para,nd,ml);
[demodataa]=qpskdemod(ich77,qch77,para,nd,ml);
%************** Parallel to serial conversion *****************
demodataa1=reshape(demodataa,1,para*nd*ml);
demodata1=reshape(demodata,1,para*nd*ml);
%************************** Bit Error Rate (BER) ****************************
% instantaneous number of error and data
noe2=sum(abs(demodata1-seldata)); % sum : built in function
noe22=sum(abs(demodataa1-seldata));
nod2=length(seldata); % length : built in function
% cumulative the number of error and data in noe and nod
noe=noe+noe2;
noee=noee+noe22;
nod=nod+nod2;
nodd=nodd+nod2;
% calculating PER
if noe2~=0
eop=eop+1;
else
eop=eop;
end
eop;
nop=nop+1;
if noe22~=0
eopp=eopp+1;
else
eopp=eopp;
end
eopp;
nopp=nopp+1;
%fprintf('%d\t%e\t%d\n',iii,noe2/nod2,eop); % fprintf : built in function
end
%********************** Output result ***************************
per1(j)=eopp/nopp;
ber1(j)=noee/nodd;
per(j)=eop/nop;
ber(j)=noe/nod;
%fprintf('%f\t%e\t%e\t%d\t\n',ebn0,ber,per,nloop);
%fid = fopen('BERofdmfad.dat','a');
%fprintf(fid,'%f\t%e\t%e\t%d\t\n',ebn0,ber,per,nloop);
%fclose(fid);
end
for ii=1:length(ebn01),
SNR=exp(ebn01(ii)*log(10)/10);
AWGN_theo(ii)=0.5*erfc(sqrt(SNR)); % AWGN theoretical bit error rate
Ray_theo(ii)=0.5*(1-1/sqrt(1+1/SNR)); % Rayleigh theoretical bit error rate
end
% plot commands
figure(1)
semilogy(ebn0,ber,'ro');
hold on;
semilogy(ebn0,per,'r*');
hold on;
semilogy(ebn0,ber1,'o');
hold on;
semilogy(ebn0,per1,'*');
hold on;
semilogy(ebn01,AWGN_theo);
semilogy(ebn01,Ray_theo,'r');
xlabel('Eb/No');ylabel('BER');
legend('QPSK 1 path Rayleigh ber','QPSK 1 path Rayleigh per','QPSK AWGN ber','QPSK AWGN per','AWGN theory','1 path Rayleigh theory','Location','SouthWest');
figure(2)
ebn0=10;
figure(2)
subplot(2,2,1),plot(ifade),title('After Ray-chn I-channel signal');
subplot(2,2,2),psd(ifade),title('After Ray-chn I-channel signal power spectrum');
subplot(2,2,3),plot(qfade),title('After Ray-chn Q-channel signal');
subplot(2,2,4),psd(qfade),title('After Ray-chn Q-channel signal power spectrum');
%******************** end of file ***************************
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -