⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fm_sae2.m

📁 一个较好的MATLAB潮流程序
💻 M
📖 第 1 页 / 共 4 页
字号:
function fm_sae2(flag)% FM_SAE2 defines a subtransmission area equivalent%        with two loads and two LTCs. This model%        uses two state variables for the tap ratios%        of the LTCs.%% FM_SAE2(FLAG)%       FLAG = 0 initialization%       FLAG = 1 algebraic equations%       FLAG = 2 algebraic Jacobians%       FLAG = 3 differential equations%       FLAG = 4 state matrix%       FLAG = 5 non-windup limits%%see also FM_SAE1 and FM_SAE3%%Author:    Federico Milano%Date:      11-Nov-2002%Version:   1.0.0%%E-mail:    fmilano@thunderbox.uwaterloo.ca%Web-site:  http://thunderbox.uwaterloo.ca/~fmilano%% Copyright (C) 2002-2005 Federico Milano%% This toolbox is free software; you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation; either version 2.0 of the License, or% (at your option) any later version.%% This toolbox is distributed in the hope that it will be useful, but% WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANDABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU% General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this toolbox; if not, write to the Free Software% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,% USA.global Bus DAE SAE2for i = 1:SAE2.n    if isempty(SAE2.m1)        m1 = 1;        m2 = 1;    else        m1 = DAE.x(SAE2.m1(i));        m2 = DAE.x(SAE2.m2(i));    end    ha = Bus.int(round(SAE2.con(i,1)));    hb = Bus.int(round(SAE2.con(i,2)));    xt1 = SAE2.con(i,6);    xt2 = SAE2.con(i,7);    xa0 = SAE2.con(i,8);    xb0 = SAE2.con(i,9);    ab0 = xb0;    a1 = SAE2.con(i,10);    b1 = SAE2.con(i,11);    a2 = SAE2.con(i,12);    b2 = SAE2.con(i,13);    h1 = SAE2.con(i,14);    k1 = SAE2.con(i,15);    vrif1 = SAE2.con(i,16);    h2 = SAE2.con(i,17);    k2 = SAE2.con(i,18);    vrif2 = SAE2.con(i,19);    mmax1 = SAE2.con(i,20);    mmin1 = SAE2.con(i,21);    mmax2 = SAE2.con(i,22);    mmin2 = SAE2.con(i,23);    va = DAE.V(ha);    vb = DAE.V(hb);    delta = DAE.a(ha);    theta = DAE.a(hb);    if isempty(SAE2.m1)        hm1 = 1;        hm2 = 1;    else        hm1 = SAE2.m1(i);        hm2 = SAE2.m2(i);    end    switch flag    case 0 % initialization        if length(SAE2.con(1,:)) > 20            xeq = zeros(4,1);            A = [1 0 1 0; 1 0 0 1; 0 1 1 0; 0 1 0 1; 1 1 0 0; 0 0 1 1];            x1 = SAE2.con(i,26) + SAE2.con(i,24);            x2 = SAE2.con(i,26) + SAE2.con(i,25) + SAE2.con(i,28);            x3 = SAE2.con(i,27) + SAE2.con(i,28) + SAE2.con(i,24);            x4 = SAE2.con(i,27) + SAE2.con(i,25);            x5 = SAE2.con(i,26) + SAE2.con(i,27) + SAE2.con(i,28);            x6 = SAE2.con(i,24) + SAE2.con(i,25) + SAE2.con(i,28);            xreal = [x1; x2; x3; x4; x5; x6];            xeq = A\xreal;            SAE2.con(i,8) = xeq(1);            SAE2.con(i,9) = xeq(2);            SAE2.con(i,6) = xeq(3);            SAE2.con(i,7) = xeq(4);        end    case 1        %  Pa :        t1 = va*va;        t2 = xa0*xa0;        t4 = t1/t2;        t5 = vb*vb;        t6 = xb0*xb0;        t8 = t5/t6;        t9 = va*vb;        t10 = -delta+theta;        t11 = cos(t10);        t12 = 1/xa0;        t13 = t11*t12;        t19 = 1/xt1;        t20 = m1*m1;        t24 = 1/(t19+a1/t20);        t29 = 1/xt2;        t30 = m2*m2;        t34 = 1/(t29+a2/t30);        t37 = -b1/m1*t19*t24-b2/m2*t29*t34;        t38 = t37*t37;        t40 = sqrt(t4+t8+2.0*t9*t13/ab0-t38);        t42 = 1/xb0;        t43 = xt1*xt1;        t46 = xt2*xt2;        Pa = va*t40/(t19+t29+t12+t42-1/t43*t24-1/t46*t34)*t12*(t37*(-va*t12-vb* ...            t42*t11)-t40*vb*t42*sin(t10))/(t4+t8+2.0*t9*t13*t42);        % C(Qa,optimized);        t1 = va*va;        t2 = 1/xa0;        t4 = xa0*xa0;        t6 = t1/t4;        t7 = vb*vb;        t8 = xb0*xb0;        t10 = t7/t8;        t11 = va*vb;        t12 = delta-theta;        t13 = cos(t12);        t14 = t13*t2;        t20 = 1/xt1;        t21 = m1*m1;        t25 = 1/(t20+a1/t21);        t30 = 1/xt2;        t31 = m2*m2;        t35 = 1/(t30+a2/t31);        t38 = -b1/m1*t20*t25-b2/m2*t30*t35;        t39 = t38*t38;        t41 = sqrt(t6+t10+2.0*t11*t14/ab0-t39);        t43 = 1/xb0;        t44 = xt1*xt1;        t47 = xt2*xt2;        Qa = t1*t2-va*t41/(t20+t30+t2+t43-1/t44*t25-1/t47*t35)*t2*(t38*vb*t43* ...            sin(t12)+t41*(va*t2+vb*t43*t13))/(t6+t10+2.0*t11*t14*t43);        % C(Pb,optimized);        t1 = va*va;        t2 = xa0*xa0;        t4 = t1/t2;        t5 = vb*vb;        t6 = xb0*xb0;        t8 = t5/t6;        t9 = va*vb;        t10 = -delta+theta;        t11 = cos(t10);        t12 = 1/xa0;        t13 = t11*t12;        t19 = 1/xt1;        t20 = m1*m1;        t24 = 1/(t19+a1/t20);        t29 = 1/xt2;        t30 = m2*m2;        t34 = 1/(t29+a2/t30);        t37 = -b1/m1*t19*t24-b2/m2*t29*t34;        t38 = t37*t37;        t40 = sqrt(t4+t8+2.0*t9*t13/ab0-t38);        t42 = 1/xb0;        t43 = xt1*xt1;        t46 = xt2*xt2;        Pb = vb*t40/(t19+t29+t12+t42-1/t43*t24-1/t46*t34)*t42*(t37*(-vb*t42-va* ...            t12*t11)+t40*va*t12*sin(t10))/(t4+t8+2.0*t9*t13*t42);        % C(Qb,optimized);        t1 = vb*vb;        t2 = 1/xb0;        t4 = va*va;        t5 = xa0*xa0;        t7 = t4/t5;        t8 = xb0*xb0;        t10 = t1/t8;        t11 = va*vb;        t12 = delta-theta;        t13 = cos(t12);        t14 = 1/xa0;        t15 = t13*t14;        t21 = 1/xt1;        t22 = m1*m1;        t26 = 1/(t21+a1/t22);        t31 = 1/xt2;        t32 = m2*m2;        t36 = 1/(t31+a2/t32);        t39 = -b1/m1*t21*t26-b2/m2*t31*t36;        t40 = t39*t39;        t42 = sqrt(t7+t10+2.0*t11*t15/ab0-t40);        t44 = xt1*xt1;        t47 = xt2*xt2;        Qb = t1*t2-vb*t42/(t21+t31+t14+t2-1/t44*t26-1/t47*t36)*t2*(-t39*va*t14* ...            sin(t12)+t42*(vb*t2+va*t14*t13))/(t7+t10+2.0*t11*t15*t2);        DAE.gp(ha) = Pa + DAE.gp(ha);        DAE.gq(ha) = Qa + DAE.gq(ha);        DAE.gp(hb) = Pb + DAE.gp(hb);        DAE.gq(hb) = Qb + DAE.gq(hb);        % Calcolo dei termini di Jlfv    case 2        % C(diff(Pa,va),optimized);        t1 = va*va;        t2 = xa0*xa0;        t3 = 1/t2;        t4 = t1*t3;        t5 = vb*vb;        t6 = xb0*xb0;        t8 = t5/t6;        t9 = va*vb;        t10 = -delta+theta;        t11 = cos(t10);        t12 = 1/xa0;        t13 = t11*t12;        t14 = 1/ab0;        t19 = 1/xt1;        t20 = m1*m1;        t24 = 1/(t19+a1/t20);        t29 = 1/xt2;        t30 = m2*m2;        t34 = 1/(t29+a2/t30);        t37 = -b1/m1*t19*t24-b2/m2*t29*t34;        t38 = t37*t37;        t40 = sqrt(t4+t8+2.0*t9*t13*t14-t38);        t41 = 1/xb0;        t42 = xt1*xt1;        t45 = xt2*xt2;        t49 = 1/(t19+t29+t12+t41-1/t42*t24-1/t45*t34);        t58 = t41*sin(t10);        t61 = t12*(t37*(-va*t12-vb*t41*t11)-t40*vb*t58);        t64 = t4+t8+2.0*t9*t13*t41;        t65 = 1/t64;        t68 = 1/t40;        t71 = va*t3;        t72 = vb*t11;        t75 = 2.0*t71+2.0*t72*t12*t14;        t80 = va*t40*t49;        t89 = t64*t64;        DAE.J12(ha,ha) = DAE.J12(ha,ha) +  t40*t49*t61*t65+va*t68*t49*t61*t65*t75/2+t80*t12*(-t37*t12-t68*vb* ...            t58*t75/2)*t65-t80*t61/t89*(2.0*t71+2.0*t72*t12*t41);        % C(diff(Pa,vb),optimized);        t1 = va*va;        t2 = xa0*xa0;        t4 = t1/t2;        t5 = vb*vb;        t6 = xb0*xb0;        t7 = 1/t6;        t8 = t5*t7;        t9 = va*vb;        t10 = -delta+theta;        t11 = cos(t10);        t12 = 1/xa0;        t13 = t11*t12;        t14 = 1/ab0;        t19 = 1/xt1;        t20 = m1*m1;        t24 = 1/(t19+a1/t20);        t29 = 1/xt2;        t30 = m2*m2;        t34 = 1/(t29+a2/t30);        t37 = -b1/m1*t19*t24-b2/m2*t29*t34;        t38 = t37*t37;        t40 = sqrt(t4+t8+2.0*t9*t13*t14-t38);        t41 = 1/t40;        t43 = 1/xb0;        t44 = xt1*xt1;        t47 = xt2*xt2;        t51 = 1/(t19+t29+t12+t43-1/t44*t24-1/t47*t34);        t59 = sin(t10);        t60 = t43*t59;        t63 = t12*(t37*(-va*t12-vb*t43*t11)-t40*vb*t60);        t66 = t4+t8+2.0*t9*t13*t43;        t67 = 1/t66;        t68 = vb*t7;        t69 = va*t11;        t72 = 2.0*t68+2.0*t69*t12*t14;        t77 = va*t40*t51;        t89 = t66*t66;        DAE.J12(ha,hb) = DAE.J12(ha,hb) + va*t41*t51*t63*t67*t72/2+t77*t12*(-t37*t43*t11-t41*vb*t60*t72/2-t40 ...            *t43*t59)*t67-t77*t63/t89*(2.0*t68+2.0*t69*t12*t43);        % C(diff(Pa,delta),optimized);        t1 = va*va;        t2 = xa0*xa0;        t3 = 1/t2;        t4 = t1*t3;        t5 = vb*vb;        t6 = xb0*xb0;        t8 = t5/t6;        t9 = va*vb;        t10 = -delta+theta;        t11 = cos(t10);        t12 = 1/xa0;        t13 = t11*t12;        t14 = 1/ab0;        t19 = 1/xt1;        t20 = m1*m1;        t24 = 1/(t19+a1/t20);        t29 = 1/xt2;        t30 = m2*m2;        t34 = 1/(t29+a2/t30);        t37 = -b1/m1*t19*t24-b2/m2*t29*t34;        t38 = t37*t37;        t40 = sqrt(t4+t8+2.0*t9*t13*t14-t38);        t41 = 1/t40;        t43 = 1/xb0;        t44 = xt1*xt1;        t47 = xt2*xt2;        t51 = 1/(t19+t29+t12+t43-1/t44*t24-1/t47*t34);        t52 = t51*t3;        t59 = t40*vb;        t60 = sin(t10);        t61 = t43*t60;        t63 = t37*(-va*t12-vb*t43*t11)-t59*t61;        t66 = t4+t8+2.0*t9*t13*t43;        t67 = 1/t66;        t69 = vb*t60;        t79 = t60*t60;        t92 = t66*t66;        DAE.J11(ha,ha) = DAE.J11(ha,ha) + t1*t41*t52*t63*t67*t69*t14+va*t40*t51*t12*(-t37*vb*t61-t41*t5*t43* ...            t79*va*t12*t14+t59*t43*t11)*t67-2.0*t1*t40*t52*t63/t92*t69*t43;        % C(diff(Pa,theta),optimized);        t1 = va*va;        t2 = xa0*xa0;        t3 = 1/t2;        t4 = t1*t3;        t5 = vb*vb;        t6 = xb0*xb0;        t8 = t5/t6;        t9 = va*vb;        t10 = -delta+theta;        t11 = cos(t10);        t12 = 1/xa0;        t13 = t11*t12;        t14 = 1/ab0;        t19 = 1/xt1;        t20 = m1*m1;        t24 = 1/(t19+a1/t20);        t29 = 1/xt2;        t30 = m2*m2;        t34 = 1/(t29+a2/t30);        t37 = -b1/m1*t19*t24-b2/m2*t29*t34;        t38 = t37*t37;        t40 = sqrt(t4+t8+2.0*t9*t13*t14-t38);        t41 = 1/t40;        t43 = 1/xb0;        t44 = xt1*xt1;        t47 = xt2*xt2;        t51 = 1/(t19+t29+t12+t43-1/t44*t24-1/t47*t34);        t52 = t51*t3;        t59 = t40*vb;        t60 = sin(t10);        t61 = t43*t60;        t63 = t37*(-va*t12-vb*t43*t11)-t59*t61;        t66 = t4+t8+2.0*t9*t13*t43;        t67 = 1/t66;        t69 = vb*t60;        t79 = t60*t60;        t92 = t66*t66;        DAE.J11(ha,hb) = DAE.J11(ha,hb) -t1*t41*t52*t63*t67*t69*t14+va*t40*t51*t12*(t37*vb*t61+t41*t5*t43* ...            t79*va*t12*t14-t59*t43*t11)*t67+2.0*t1*t40*t52*t63/t92*t69*t43;        % C(diff(Qa,va),optimized);        t1 = 1/xa0;        t2 = va*t1;        t3 = va*va;        t4 = xa0*xa0;        t5 = 1/t4;        t6 = t3*t5;        t7 = vb*vb;        t8 = xb0*xb0;        t10 = t7/t8;        t11 = va*vb;        t12 = delta-theta;        t13 = cos(t12);        t14 = t13*t1;        t15 = 1/ab0;        t20 = 1/xt1;        t21 = m1*m1;        t25 = 1/(t20+a1/t21);        t30 = 1/xt2;        t31 = m2*m2;        t35 = 1/(t30+a2/t31);        t38 = -b1/m1*t20*t25-b2/m2*t30*t35;        t39 = t38*t38;        t41 = sqrt(t6+t10+2.0*t11*t14*t15-t39);        t42 = 1/xb0;        t43 = xt1*xt1;        t46 = xt2*xt2;        t50 = 1/(t20+t30+t1+t42-1/t43*t25-1/t46*t35);        t58 = t2+vb*t42*t13;        t61 = t1*(t38*vb*t42*sin(t12)+t41*t58);        t64 = t6+t10+2.0*t11*t14*t42;        t65 = 1/t64;        t68 = 1/t41;        t71 = va*t5;        t72 = vb*t13;        t75 = 2.0*t71+2.0*t72*t1*t15;        t80 = va*t41*t50;        t88 = t64*t64;        DAE.J22(ha,ha) = DAE.J22(ha,ha) + 2.0*t2-t41*t50*t61*t65-va*t68*t50*t61*t65*t75/2-t80*t1*(t68*t58*t75 ...

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -