📄 evaluateoutput.m
字号:
function [MLKOut] = EvaluateOutput(Ytr,YpredTrain,Ytest,YpredTest,Imap,MLK,MLKP);
MLKOut=MLK;
if (upper(MLKP.ProblemType) == 'CLS' & Imap == 1)
% classification
if (upper(MLKP.SilentMode) == 'N')
[ClassTrain, PercCorrTrain] = Classify(Ytr,YpredTrain,MLKP)
[ClassTest, PercCorrTest] = Classify(Ytest,YpredTest,MLKP)
else
[ClassTrain, PercCorrTrain] = Classify(Ytr,YpredTrain,MLKP);
[ClassTest, PercCorrTest] = Classify(Ytest,YpredTest,MLKP);
end
MLKOut.ClassTrain=ClassTrain;
MLKOut.ClassTest=ClassTest;
MLKOut.PercCorrTrain=PercCorrTrain;
MLKOut.PercCorrTest=PercCorrTest;
elseif (upper(MLKP.ProblemType) == 'REG' | Imap == 2)
% regression
[Nobj,Nvar]=size(Ytr);
[RmseTrain, CorrTrain] = Rmse(Ytr,YpredTrain);
RmseTrainAll = sqrt(RmseTrain*RmseTrain'/Nvar);
[RmseTest, CorrTest] = Rmse(Ytest,YpredTest);
RmseTestAll = sqrt(RmseTest*RmseTest'/Nvar);
if (upper(MLKP.SilentMode) == 'N')
for ivar=1:Nvar
Message=sprintf('RMSE training: %g Corr: %g', RmseTrain(ivar), CorrTrain(ivar));
disp(Message);
Message=sprintf('RMSE test: %g Corr: %g', RmseTest(ivar), CorrTest(ivar));
disp(Message); disp(' ');
end
end
MLKOut.RmseTrain=RmseTrain;
MLKOut.RmseTest=RmseTest;
MLKOut.CorrTrain=CorrTrain;
MLKOut.CorrTest=CorrTest;
MLKOut.RmseTrainAll=RmseTrainAll;
MLKOut.RmseTestAll=RmseTestAll;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -