📄 plstrain.m
字号:
function [B,XLoadings,MLKP] = PlsTrain(Xtrain, Ytrain, MLKP);
%
% Calculates a model based on Multiple Linear Regression
%
% Format: [B, Xloadings, MLKP] = plstrain(Xtrain, Ytrain, MLKP)
%
% Xtrain: input data of the training set
% Ytrain: output data of the traning set
% MLKP: parameter structure
%
% B: matrix containing the regression coefficients based on Xtrain and Ytrain
% XLoadings: the loadings for the X-block (necessary for analysing SOMPLS)
% MLKP: the parameter structure including in case of SIMPLS the mean
% values of the input and outpur matrices in the training set
%
warning off
[Nobj,NvarX] = size(Xtrain);
[Nobj,NvarY] = size(Ytrain);
if MLKP.PLSMode == 'SIMPLS'
MLKP.PLSMX = mean(Xtrain);
XTrainMC = (Xtrain-MLKP.PLSMX(ones(Nobj,1),:));
MLKP.PLSMY = mean(Ytrain);
YTrainMC = (Ytrain-MLKP.PLSMY(ones(Nobj,1),:));
[B,C,XLoadings,T,U,R,R2X,R2Y]=SIMPLS(Xtrain,Ytrain,MLKP.LatentVar);
else
[B,XLoadings] = NIPPLS(Xtrain,Ytrain,MLKP.LatentVar);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -