⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_hahn1.c

📁 开放gsl矩阵运算
💻 C
字号:
const size_t hahn1_N = 236;const size_t hahn1_P = 7;/* double hahn1_x0[7] = { 10, -1, 0.05, -0.00001, -0.05, 0.001, -0.000001 }; */double hahn1_x0[7] = { 1, -0.1, 0.005, -0.000001, -0.005, 0.0001, -0.0000001}; double hahn1_x[7] = {1.0776351733E+00,-1.2269296921E-01,4.0863750610E-03,-1.4262662514E-06,-5.7609940901E-03,2.4053735503E-04,-1.2314450199E-07};double hahn1_sumsq = 1.5324382854E+00;double hahn1_sigma[7] = {  1.7070154742E-01,  1.2000289189E-02,  2.2508314937E-04,  2.7578037666E-07,  2.4712888219E-04,  1.0449373768E-05,  1.3027335327E-08};double hahn1_F1[236] = {        .591E0,       1.547E0,       2.902E0,       2.894E0,       4.703E0,       6.307E0,       7.03E0 ,       7.898E0,       9.470E0,       9.484E0,      10.072E0,      10.163E0,      11.615E0,      12.005E0,      12.478E0,      12.982E0,      12.970E0,      13.926E0,      14.452E0,      14.404E0,      15.190E0,      15.550E0,      15.528E0,      15.499E0,      16.131E0,      16.438E0,      16.387E0,      16.549E0,      16.872E0,      16.830E0,      16.926E0,      16.907E0,      16.966E0,      17.060E0,      17.122E0,      17.311E0,      17.355E0,      17.668E0,      17.767E0,      17.803E0,      17.765E0,      17.768E0,      17.736E0,      17.858E0,      17.877E0,      17.912E0,      18.046E0,      18.085E0,      18.291E0,      18.357E0,      18.426E0,      18.584E0,      18.610E0,      18.870E0,      18.795E0,      19.111E0,        .367E0,        .796E0,       0.892E0,       1.903E0,       2.150E0,       3.697E0,       5.870E0,       6.421E0,       7.422E0,       9.944E0,      11.023E0,      11.87E0 ,      12.786E0,      14.067E0,      13.974E0,      14.462E0,      14.464E0,      15.381E0,      15.483E0,      15.59E0 ,      16.075E0,      16.347E0,      16.181E0,      16.915E0,      17.003E0,      16.978E0,      17.756E0,      17.808E0,      17.868E0,      18.481E0,      18.486E0,      19.090E0,      16.062E0,      16.337E0,      16.345E0,      16.388E0,      17.159E0,      17.116E0,      17.164E0,      17.123E0,      17.979E0,      17.974E0,      18.007E0,      17.993E0,      18.523E0,      18.669E0,      18.617E0,      19.371E0,      19.330E0,       0.080E0,       0.248E0,       1.089E0,       1.418E0,       2.278E0,       3.624E0,       4.574E0,       5.556E0,       7.267E0,       7.695E0,       9.136E0,       9.959E0,       9.957E0,      11.600E0,      13.138E0,      13.564E0,      13.871E0,      13.994E0,      14.947E0,      15.473E0,      15.379E0,      15.455E0,      15.908E0,      16.114E0,      17.071E0,      17.135E0,      17.282E0,      17.368E0,      17.483E0,      17.764E0,      18.185E0,      18.271E0,      18.236E0,      18.237E0,      18.523E0,      18.627E0,      18.665E0,      19.086E0,       0.214E0,       0.943E0,       1.429E0,       2.241E0,       2.951E0,       3.782E0,       4.757E0,       5.602E0,       7.169E0,       8.920E0,      10.055E0,      12.035E0,      12.861E0,      13.436E0,      14.167E0,      14.755E0,      15.168E0,      15.651E0,      15.746E0,      16.216E0,      16.445E0,      16.965E0,      17.121E0,      17.206E0,      17.250E0,      17.339E0,      17.793E0,      18.123E0,      18.49E0 ,      18.566E0,      18.645E0,      18.706E0,      18.924E0,      19.1E0  ,       0.375E0,       0.471E0,       1.504E0,       2.204E0,       2.813E0,       4.765E0,       9.835E0,      10.040E0,      11.946E0,      12.596E0,      13.303E0,      13.922E0,      14.440E0,      14.951E0,      15.627E0,      15.639E0,      15.814E0,      16.315E0,      16.334E0,      16.430E0,      16.423E0,      17.024E0,      17.009E0,      17.165E0,      17.134E0,      17.349E0,      17.576E0,      17.848E0,      18.090E0,      18.276E0,      18.404E0,      18.519E0,      19.133E0,      19.074E0,      19.239E0,      19.280E0,      19.101E0,      19.398E0,      19.252E0,      19.89E0 ,      20.007E0,      19.929E0,      19.268E0,      19.324E0,      20.049E0,      20.107E0,      20.062E0,      20.065E0,      19.286E0,      19.972E0,      20.088E0,      20.743E0,      20.83E0 ,      20.935E0,      21.035E0,      20.93E0 ,      21.074E0,      21.085E0,      20.935E0};double hahn1_F0[236] = {    24.41E0,    34.82E0,    44.09E0,    45.07E0,    54.98E0,    65.51E0,    70.53E0,    75.70E0,    89.57E0,    91.14E0,    96.40E0,    97.19E0,   114.26E0,   120.25E0,   127.08E0,   133.55E0,   133.61E0,   158.67E0,   172.74E0,   171.31E0,   202.14E0,   220.55E0,   221.05E0,   221.39E0,   250.99E0,   268.99E0,   271.80E0,   271.97E0,   321.31E0,   321.69E0,   330.14E0,   333.03E0,   333.47E0,   340.77E0,   345.65E0,   373.11E0,   373.79E0,   411.82E0,   419.51E0,   421.59E0,   422.02E0,   422.47E0,   422.61E0,   441.75E0,   447.41E0,   448.7E0 ,   472.89E0,   476.69E0,   522.47E0,   522.62E0,   524.43E0,   546.75E0,   549.53E0,   575.29E0,   576.00E0,   625.55E0,    20.15E0,    28.78E0,    29.57E0,    37.41E0,    39.12E0,    50.24E0,    61.38E0,    66.25E0,    73.42E0,    95.52E0,   107.32E0,   122.04E0,   134.03E0,   163.19E0,   163.48E0,   175.70E0,   179.86E0,   211.27E0,   217.78E0,   219.14E0,   262.52E0,   268.01E0,   268.62E0,   336.25E0,   337.23E0,   339.33E0,   427.38E0,   428.58E0,   432.68E0,   528.99E0,   531.08E0,   628.34E0,   253.24E0,   273.13E0,   273.66E0,   282.10E0,   346.62E0,   347.19E0,   348.78E0,   351.18E0,   450.10E0,   450.35E0,   451.92E0,   455.56E0,   552.22E0,   553.56E0,   555.74E0,   652.59E0,   656.20E0,    14.13E0,    20.41E0,    31.30E0,    33.84E0,    39.70E0,    48.83E0,    54.50E0,    60.41E0,    72.77E0,    75.25E0,    86.84E0,    94.88E0,    96.40E0,   117.37E0,   139.08E0,   147.73E0,   158.63E0,   161.84E0,   192.11E0,   206.76E0,   209.07E0,   213.32E0,   226.44E0,   237.12E0,   330.90E0,   358.72E0,   370.77E0,   372.72E0,   396.24E0,   416.59E0,   484.02E0,   495.47E0,   514.78E0,   515.65E0,   519.47E0,   544.47E0,   560.11E0,   620.77E0,    18.97E0,    28.93E0,    33.91E0,    40.03E0,    44.66E0,    49.87E0,    55.16E0,    60.90E0,    72.08E0,    85.15E0,    97.06E0,   119.63E0,   133.27E0,   143.84E0,   161.91E0,   180.67E0,   198.44E0,   226.86E0,   229.65E0,   258.27E0,   273.77E0,   339.15E0,   350.13E0,   362.75E0,   371.03E0,   393.32E0,   448.53E0,   473.78E0,   511.12E0,   524.70E0,   548.75E0,   551.64E0,   574.02E0,   623.86E0,    21.46E0,    24.33E0,    33.43E0,    39.22E0,    44.18E0,    55.02E0,    94.33E0,    96.44E0,   118.82E0,   128.48E0,   141.94E0,   156.92E0,   171.65E0,   190.00E0,   223.26E0,   223.88E0,   231.50E0,   265.05E0,   269.44E0,   271.78E0,   273.46E0,   334.61E0,   339.79E0,   349.52E0,   358.18E0,   377.98E0,   394.77E0,   429.66E0,   468.22E0,   487.27E0,   519.54E0,   523.03E0,   612.99E0,   638.59E0,   641.36E0,   622.05E0,   631.50E0,   663.97E0,   646.9E0 ,   748.29E0,   749.21E0,   750.14E0,   647.04E0,   646.89E0,   746.9E0 ,   748.43E0,   747.35E0,   749.27E0,   647.61E0,   747.78E0,   750.51E0,   851.37E0,   845.97E0,   847.54E0,   849.93E0,   851.61E0,   849.75E0,   850.98E0,   848.23E0};inthahn1_f (const gsl_vector * x, void *params, gsl_vector * f){  double b[7];  size_t i;  for (i = 0; i < 7; i++)    {      b[i] = gsl_vector_get(x, i);    }  for (i = 0; i < 236; i++)    {      double x = hahn1_F0[i];      double y = ((b[0] + x* (b[1]  + x * (b[2] + x * b[3])))                  / (1 + x*(b[4]  + x *(b[5] + x*b[6]))));      gsl_vector_set (f, i, hahn1_F1[i] - y);    }  return GSL_SUCCESS;}inthahn1_df (const gsl_vector * x, void *params, gsl_matrix * df){  double b[7];  size_t i;  for (i = 0; i < 7; i++)    {      b[i] = gsl_vector_get(x, i);    }  for (i = 0; i < 236; i++)    {      double x = hahn1_F0[i];      double u = (b[0] + x*(b[1] + x*(b[2] + x * b[3])));      double v = (1 + x*(b[4] + x*(b[5] + x*b[6])));      gsl_matrix_set (df, i, 0, -1/v);      gsl_matrix_set (df, i, 1, -x/v);      gsl_matrix_set (df, i, 2, -x*x/v);      gsl_matrix_set (df, i, 3, -x*x*x/v);      gsl_matrix_set (df, i, 4, x*u/(v*v));      gsl_matrix_set (df, i, 5, x*x*u/(v*v));      gsl_matrix_set (df, i, 6, x*x*x*u/(v*v));    }  return GSL_SUCCESS;}inthahn1_fdf (const gsl_vector * x, void *params,	   gsl_vector * f, gsl_matrix * df){  hahn1_f (x, params, f);  hahn1_df (x, params, df);  return GSL_SUCCESS;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -