⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_source.c

📁 开放gsl矩阵运算
💻 C
字号:
/* matrix/test_source.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */void FUNCTION (test, func) (void);void FUNCTION (test, trap) (void);void FUNCTION (test, text) (void);void FUNCTION (test, binary) (void);voidFUNCTION (test, func) (void){  TYPE (gsl_vector) * v;  size_t i, j;  size_t k = 0;  TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N);  gsl_test (m->data == 0, NAME (gsl_matrix) "_alloc returns valid pointer");  gsl_test (m->size1 != M, NAME (gsl_matrix) "_alloc returns valid size1");  gsl_test (m->size2 != N, NAME (gsl_matrix) "_alloc returns valid size2");  gsl_test (m->tda != N, NAME (gsl_matrix) "_alloc returns valid tda");  for (i = 0; i < M; i++)    {      for (j = 0; j < N; j++)	{	  k++;	  FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k);	}    }  {    status = 0;    k = 0;    for (i = 0; i < M; i++)      {	for (j = 0; j < N; j++)	  {	    k++;	    if (m->data[i * N + j] != (BASE) k)	      status = 1;	  };      };    gsl_test (status, NAME (gsl_matrix) "_set writes into array correctly");  }  {    status = 0;    k = 0;    for (i = 0; i < M; i++)      {	for (j = 0; j < N; j++)	  {	    k++;	    if (FUNCTION (gsl_matrix, get) (m, i, j) != (BASE) k)	      status = 1;	  };      };    gsl_test (status, NAME (gsl_matrix) "_get reads from array correctly");  }  FUNCTION (gsl_matrix, free) (m);	/* free whatever is in m */  m = FUNCTION (gsl_matrix, calloc) (M, N);  v = FUNCTION (gsl_vector, calloc) (N);  k = 0;  for (i = 0; i < M; i++)    {      for (j = 0; j < N; j++)	{	  k++;	  FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k);	}    }  {    status = 0;    k = 0;    for (i = 0; i < M; i++)      {	FUNCTION (gsl_matrix, get_row) (v, m, i);	for (j = 0; j < N; j++)	  {	    k++;	    if (v->data[j] != (BASE) k)	      status = 1;	  }      }    gsl_test (status, NAME (gsl_matrix) "_get_row extracts row correctly");  }  {    BASE exp_max = FUNCTION(gsl_matrix, get) (m, 0, 0);    BASE exp_min = FUNCTION(gsl_matrix, get) (m, 0, 0);    size_t exp_imax = 0, exp_jmax = 0, exp_imin = 0, exp_jmin = 0;    for (i = 0; i < M; i++)      {        for (j = 0; j < N; j++)          {            BASE k = FUNCTION(gsl_matrix, get) (m, i, j);            if (k > exp_max) {              exp_max =  FUNCTION(gsl_matrix, get) (m, i, j);              exp_imax = i;              exp_jmax = j;            }            if (k < exp_min) {              exp_min =  FUNCTION(gsl_matrix, get) (m, i, j);              exp_imin = i;              exp_jmin = j;            }          }      }    {      BASE max = FUNCTION(gsl_matrix, max) (m) ;      gsl_test (max != exp_max, NAME(gsl_matrix) "_max returns correct maximum value");    }    {      BASE min = FUNCTION(gsl_matrix, min) (m) ;            gsl_test (min != exp_min, NAME(gsl_matrix) "_min returns correct minimum value");    }    {      BASE min, max;      FUNCTION(gsl_matrix, minmax) (m, &min, &max);      gsl_test (max != exp_max, NAME(gsl_matrix) "_minmax returns correct maximum value");      gsl_test (min != exp_min, NAME(gsl_matrix) "_minmax returns correct minimum value");    }    {      size_t imax, jmax;      FUNCTION(gsl_matrix, max_index) (m, &imax, &jmax) ;      gsl_test (imax != exp_imax, NAME(gsl_matrix) "_max_index returns correct maximum i");      gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_max_index returns correct maximum j");    }    {      size_t imin, jmin;      FUNCTION(gsl_matrix, min_index) (m, &imin, &jmin) ;      gsl_test (imin != exp_imin, NAME(gsl_matrix) "_min_index returns correct minimum i");      gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_min_index returns correct minimum j");    }    {      size_t imin, jmin, imax, jmax;      FUNCTION(gsl_matrix, minmax_index) (m,  &imin, &jmin, &imax, &jmax);      gsl_test (imax != exp_imax, NAME(gsl_matrix) "_minmax_index returns correct maximum i");      gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_minmax_index returns correct maximum j");      gsl_test (imin != exp_imin, NAME(gsl_matrix) "_minmax_index returns correct minimum i");      gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_minmax_index returns correct minimum j");    }  }  {    TYPE (gsl_matrix) * a = FUNCTION (gsl_matrix, calloc) (M, N);    TYPE (gsl_matrix) * b = FUNCTION (gsl_matrix, calloc) (M, N);        for (i = 0; i < M; i++)      {        for (j = 0; j < N; j++)          {            FUNCTION (gsl_matrix, set) (a, i, j, (BASE)(3 + i +  5 * j));            FUNCTION (gsl_matrix, set) (b, i, j, (BASE)(3 + 2 * i + 4 * j));          }      }        FUNCTION(gsl_matrix, memcpy) (m, a);    FUNCTION(gsl_matrix, add) (m, b);        {      int status = 0;            for (i = 0; i < M; i++)        {          for (j = 0; j < N; j++)            {              BASE r = FUNCTION(gsl_matrix,get) (m,i,j);              BASE x = FUNCTION(gsl_matrix,get) (a,i,j);              BASE y = FUNCTION(gsl_matrix,get) (b,i,j);              BASE z = x + y;              if (r != z)                status = 1;            }        }      gsl_test (status, NAME (gsl_matrix) "_add adds correctly");    }    FUNCTION(gsl_matrix, memcpy) (m, a);    FUNCTION(gsl_matrix, sub) (m, b);        {      int status = 0;            for (i = 0; i < M; i++)        {          for (j = 0; j < N; j++)            {              BASE r = FUNCTION(gsl_matrix,get) (m,i,j);              BASE x = FUNCTION(gsl_matrix,get) (a,i,j);              BASE y = FUNCTION(gsl_matrix,get) (b,i,j);              BASE z = x - y;              if (r != z)                status = 1;            }        }      gsl_test (status, NAME (gsl_matrix) "_sub subtracts correctly");    }    FUNCTION(gsl_matrix, memcpy) (m, a);    FUNCTION(gsl_matrix, mul_elements) (m, b);        {      int status = 0;            for (i = 0; i < M; i++)        {          for (j = 0; j < N; j++)            {              BASE r = FUNCTION(gsl_matrix,get) (m,i,j);              BASE x = FUNCTION(gsl_matrix,get) (a,i,j);              BASE y = FUNCTION(gsl_matrix,get) (b,i,j);              BASE z = x * y;              if (r != z)                status = 1;            }        }      gsl_test (status, NAME (gsl_matrix) "_mul_elements multiplies correctly");    }    FUNCTION(gsl_matrix, memcpy) (m, a);    FUNCTION(gsl_matrix, div_elements) (m, b);        {      int status = 0;            for (i = 0; i < M; i++)        {          for (j = 0; j < N; j++)            {              BASE r = FUNCTION(gsl_matrix,get) (m,i,j);              BASE x = FUNCTION(gsl_matrix,get) (a,i,j);              BASE y = FUNCTION(gsl_matrix,get) (b,i,j);              BASE z = x / y;              if (fabs(r - z) > 2 * GSL_FLT_EPSILON * fabs(z))                status = 1;            }        }      gsl_test (status, NAME (gsl_matrix) "_div_elements divides correctly");    }    FUNCTION(gsl_matrix, free) (a);    FUNCTION(gsl_matrix, free) (b);  } FUNCTION (gsl_matrix, free) (m); FUNCTION (gsl_vector, free) (v);}#if !(defined(USES_LONGDOUBLE) && !defined(HAVE_PRINTF_LONGDOUBLE))voidFUNCTION (test, text) (void){  TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N);  size_t i, j;  int k = 0;  {    FILE *f = fopen ("test.txt", "w");    for (i = 0; i < M; i++)      {	for (j = 0; j < N; j++)	  {	    k++;	    FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k);	  }      }    FUNCTION (gsl_matrix, fprintf) (f, m, OUT_FORMAT);    fclose (f);  }  {    FILE *f = fopen ("test.txt", "r");    TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N);    status = 0;    FUNCTION (gsl_matrix, fscanf) (f, mm);    k = 0;    for (i = 0; i < M; i++)      {	for (j = 0; j < N; j++)	  {	    k++;	    if (mm->data[i * N + j] != (BASE) k)	      status = 1;	  }      }    gsl_test (status, NAME (gsl_matrix) "_fprintf and fscanf work correctly");    fclose (f);    FUNCTION (gsl_matrix, free) (mm);  }  FUNCTION (gsl_matrix, free) (m);}#endifvoidFUNCTION (test, binary) (void){  TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, calloc) (M, N);  size_t i, j;  size_t k = 0;  {    FILE *f = fopen ("test.dat", "wb");    k = 0;    for (i = 0; i < M; i++)      {	for (j = 0; j < N; j++)	  {	    k++;	    FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k);	  }      }    FUNCTION (gsl_matrix, fwrite) (f, m);    fclose (f);  }  {    FILE *f = fopen ("test.dat", "rb");    TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N);    status = 0;    FUNCTION (gsl_matrix, fread) (f, mm);    k = 0;    for (i = 0; i < M; i++)      {	for (j = 0; j < N; j++)	  {	    k++;	    if (mm->data[i * N + j] != (BASE) k)	      status = 1;	  }      }    gsl_test (status, NAME (gsl_matrix) "_write and read work correctly");    fclose (f);    FUNCTION (gsl_matrix, free) (mm);  }  FUNCTION (gsl_matrix, free) (m);}voidFUNCTION (test, trap) (void){  TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N);  size_t i = 0, j = 0;  double x;  status = 0;  FUNCTION (gsl_matrix, set) (m, M + 1, 0, (BASE) 1.2);  gsl_test (!status,	    NAME (gsl_matrix) "_set traps 1st index above upper bound");  status = 0;  FUNCTION (gsl_matrix, set) (m, 0, N + 1, (BASE) 1.2);  gsl_test (!status,	    NAME (gsl_matrix) "_set traps 2nd index above upper bound");  status = 0;  FUNCTION (gsl_matrix, set) (m, M, 0, (BASE) 1.2);  gsl_test (!status,	    NAME (gsl_matrix) "_set traps 1st index at upper bound");  status = 0;  FUNCTION (gsl_matrix, set) (m, 0, N, (BASE) 1.2);  gsl_test (!status,	    NAME (gsl_matrix) "_set traps 2nd index at upper bound");  status = 0;  x = FUNCTION (gsl_matrix, get) (m, i - 1, 0);  gsl_test (!status,	    NAME (gsl_matrix) "_get traps 1st index below lower bound");  gsl_test (x != 0,     NAME (gsl_matrix) "_get returns zero for 1st index below lower bound");  status = 0;  x = FUNCTION (gsl_matrix, get) (m, 0, j - 1);  gsl_test (!status,	    NAME (gsl_matrix) "_get traps 2nd index below lower bound");  gsl_test (x != 0,     NAME (gsl_matrix) "_get returns zero for 2nd index below lower bound");  status = 0;  x = FUNCTION (gsl_matrix, get) (m, M + 1, 0);  gsl_test (!status,	    NAME (gsl_matrix) "_get traps 1st index above upper bound");  gsl_test (x != 0,     NAME (gsl_matrix) "_get returns zero for 1st index above upper bound");  status = 0;  x = FUNCTION (gsl_matrix, get) (m, 0, N + 1);  gsl_test (!status,	    NAME (gsl_matrix) "_get traps 2nd index above upper bound");  gsl_test (x != 0,     NAME (gsl_matrix) "_get returns zero for 2nd index above upper bound");  status = 0;  x = FUNCTION (gsl_matrix, get) (m, M, 0);  gsl_test (!status,	    NAME (gsl_matrix) "_get traps 1st index at upper bound");  gsl_test (x != 0,	NAME (gsl_matrix) "_get returns zero for 1st index at upper bound");  status = 0;  x = FUNCTION (gsl_matrix, get) (m, 0, N);  gsl_test (!status,	    NAME (gsl_matrix) "_get traps 2nd index at upper bound");  gsl_test (x != 0,	NAME (gsl_matrix) "_get returns zero for 2nd index at upper bound");  FUNCTION (gsl_matrix, free) (m);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -