📄 hyperg_2f1.c
字号:
/* specfunc/hyperg_2F1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_exp.h"#include "gsl_sf_pow_int.h"#include "gsl_sf_gamma.h"#include "gsl_sf_psi.h"#include "gsl_sf_hyperg.h"#include "error.h"#define locEPS (1000.0*GSL_DBL_EPSILON)/* Assumes c != negative integer. */static inthyperg_2F1_series(const double a, const double b, const double c, const double x, gsl_sf_result * result ){ double sum_pos = 1.0; double sum_neg = 0.0; double del_pos = 1.0; double del_neg = 0.0; double del = 1.0; double k = 0.0; int i = 0; if(fabs(c) < GSL_DBL_EPSILON) { result->val = 0.0; /* FIXME: ?? */ result->err = 1.0; GSL_ERROR ("error", GSL_EDOM); } do { if(++i > 30000) { result->val = sum_pos - sum_neg; result->err = del_pos + del_neg; result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k)+1.0) * fabs(result->val); GSL_ERROR ("error", GSL_EMAXITER); } del *= (a+k)*(b+k) * x / ((c+k) * (k+1.0)); /* Gauss series */ if(del > 0.0) { del_pos = del; sum_pos += del; } else if(del == 0.0) { /* Exact termination (a or b was a negative integer). */ del_pos = 0.0; del_neg = 0.0; break; } else { del_neg = -del; sum_neg -= del; } k += 1.0; } while(fabs((del_pos + del_neg)/(sum_pos-sum_neg)) > GSL_DBL_EPSILON); result->val = sum_pos - sum_neg; result->err = del_pos + del_neg; result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k) + 1.0) * fabs(result->val); return GSL_SUCCESS;}/* a = aR + i aI, b = aR - i aI */staticinthyperg_2F1_conj_series(const double aR, const double aI, const double c, double x, gsl_sf_result * result){ if(c == 0.0) { result->val = 0.0; /* FIXME: should be Inf */ result->err = 0.0; GSL_ERROR ("error", GSL_EDOM); } else { double sum_pos = 1.0; double sum_neg = 0.0; double del_pos = 1.0; double del_neg = 0.0; double del = 1.0; double k = 0.0; do { del *= ((aR+k)*(aR+k) + aI*aI)/((k+1.0)*(c+k)) * x; if(del >= 0.0) { del_pos = del; sum_pos += del; } else { del_neg = -del; sum_neg -= del; } if(k > 30000) { result->val = sum_pos - sum_neg; result->err = del_pos + del_neg; result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k)+1.0) * fabs(result->val); GSL_ERROR ("error", GSL_EMAXITER); } k += 1.0; } while(fabs((del_pos + del_neg)/(sum_pos - sum_neg)) > GSL_DBL_EPSILON); result->val = sum_pos - sum_neg; result->err = del_pos + del_neg; result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k) + 1.0) * fabs(result->val); return GSL_SUCCESS; }}/* Luke's rational approximation. The most accesible * discussion is in [Kolbig, CPC 23, 51 (1981)]. * The convergence is supposedly guaranteed for x < 0. * You have to read Luke's books to see this and other * results. Unfortunately, the stability is not so * clear to me, although it seems very efficient when * it works. */staticinthyperg_2F1_luke(const double a, const double b, const double c, const double xin, gsl_sf_result * result){ int stat_iter; const double RECUR_BIG = 1.0e+50; const int nmax = 20000; int n = 3; const double x = -xin; const double x3 = x*x*x; const double t0 = a*b/c; const double t1 = (a+1.0)*(b+1.0)/(2.0*c); const double t2 = (a+2.0)*(b+2.0)/(2.0*(c+1.0)); double F = 1.0; double prec; double Bnm3 = 1.0; /* B0 */ double Bnm2 = 1.0 + t1 * x; /* B1 */ double Bnm1 = 1.0 + t2 * x * (1.0 + t1/3.0 * x); /* B2 */ double Anm3 = 1.0; /* A0 */ double Anm2 = Bnm2 - t0 * x; /* A1 */ double Anm1 = Bnm1 - t0*(1.0 + t2*x)*x + t0 * t1 * (c/(c+1.0)) * x*x; /* A2 */ while(1) { double npam1 = n + a - 1; double npbm1 = n + b - 1; double npcm1 = n + c - 1; double npam2 = n + a - 2; double npbm2 = n + b - 2; double npcm2 = n + c - 2; double tnm1 = 2*n - 1; double tnm3 = 2*n - 3; double tnm5 = 2*n - 5; double n2 = n*n; double F1 = (3.0*n2 + (a+b-6)*n + 2 - a*b - 2*(a+b)) / (2*tnm3*npcm1); double F2 = -(3.0*n2 - (a+b+6)*n + 2 - a*b)*npam1*npbm1/(4*tnm1*tnm3*npcm2*npcm1); double F3 = (npam2*npam1*npbm2*npbm1*(n-a-2)*(n-b-2)) / (8*tnm3*tnm3*tnm5*(n+c-3)*npcm2*npcm1); double E = -npam1*npbm1*(n-c-1) / (2*tnm3*npcm2*npcm1); double An = (1.0+F1*x)*Anm1 + (E + F2*x)*x*Anm2 + F3*x3*Anm3; double Bn = (1.0+F1*x)*Bnm1 + (E + F2*x)*x*Bnm2 + F3*x3*Bnm3; double r = An/Bn; prec = fabs((F - r)/F); F = r; if(prec < GSL_DBL_EPSILON || n > nmax) break; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; Anm3 /= RECUR_BIG; Bnm3 /= RECUR_BIG; } else if(fabs(An) < 1.0/RECUR_BIG || fabs(Bn) < 1.0/RECUR_BIG) { An *= RECUR_BIG; Bn *= RECUR_BIG; Anm1 *= RECUR_BIG; Bnm1 *= RECUR_BIG; Anm2 *= RECUR_BIG; Bnm2 *= RECUR_BIG; Anm3 *= RECUR_BIG; Bnm3 *= RECUR_BIG; } n++; Bnm3 = Bnm2; Bnm2 = Bnm1; Bnm1 = Bn; Anm3 = Anm2; Anm2 = Anm1; Anm1 = An; } result->val = F; result->err = 2.0 * fabs(prec * F); result->err += 2.0 * GSL_DBL_EPSILON * (n+1.0) * fabs(F); /* FIXME: just a hack: there's a lot of shit going on here */ result->err *= 8.0 * (fabs(a) + fabs(b) + 1.0); stat_iter = (n >= nmax ? GSL_EMAXITER : GSL_SUCCESS ); return stat_iter;}/* Luke's rational approximation for the * case a = aR + i aI, b = aR - i aI. */staticinthyperg_2F1_conj_luke(const double aR, const double aI, const double c, const double xin, gsl_sf_result * result){ int stat_iter; const double RECUR_BIG = 1.0e+50; const int nmax = 10000; int n = 3; const double x = -xin; const double x3 = x*x*x; const double atimesb = aR*aR + aI*aI; const double apb = 2.0*aR; const double t0 = atimesb/c; const double t1 = (atimesb + apb + 1.0)/(2.0*c); const double t2 = (atimesb + 2.0*apb + 4.0)/(2.0*(c+1.0)); double F = 1.0; double prec; double Bnm3 = 1.0; /* B0 */ double Bnm2 = 1.0 + t1 * x; /* B1 */ double Bnm1 = 1.0 + t2 * x * (1.0 + t1/3.0 * x); /* B2 */ double Anm3 = 1.0; /* A0 */ double Anm2 = Bnm2 - t0 * x; /* A1 */ double Anm1 = Bnm1 - t0*(1.0 + t2*x)*x + t0 * t1 * (c/(c+1.0)) * x*x; /* A2 */ while(1) { double nm1 = n - 1; double nm2 = n - 2; double npam1_npbm1 = atimesb + nm1*apb + nm1*nm1; double npam2_npbm2 = atimesb + nm2*apb + nm2*nm2; double npcm1 = nm1 + c; double npcm2 = nm2 + c; double tnm1 = 2*n - 1; double tnm3 = 2*n - 3; double tnm5 = 2*n - 5; double n2 = n*n; double F1 = (3.0*n2 + (apb-6)*n + 2 - atimesb - 2*apb) / (2*tnm3*npcm1); double F2 = -(3.0*n2 - (apb+6)*n + 2 - atimesb)*npam1_npbm1/(4*tnm1*tnm3*npcm2*npcm1); double F3 = (npam2_npbm2*npam1_npbm1*(nm2*nm2 - nm2*apb + atimesb)) / (8*tnm3*tnm3*tnm5*(n+c-3)*npcm2*npcm1); double E = -npam1_npbm1*(n-c-1) / (2*tnm3*npcm2*npcm1); double An = (1.0+F1*x)*Anm1 + (E + F2*x)*x*Anm2 + F3*x3*Anm3; double Bn = (1.0+F1*x)*Bnm1 + (E + F2*x)*x*Bnm2 + F3*x3*Bnm3; double r = An/Bn; prec = fabs(F - r)/fabs(F); F = r; if(prec < GSL_DBL_EPSILON || n > nmax) break; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; Anm3 /= RECUR_BIG; Bnm3 /= RECUR_BIG; } else if(fabs(An) < 1.0/RECUR_BIG || fabs(Bn) < 1.0/RECUR_BIG) { An *= RECUR_BIG; Bn *= RECUR_BIG; Anm1 *= RECUR_BIG; Bnm1 *= RECUR_BIG; Anm2 *= RECUR_BIG; Bnm2 *= RECUR_BIG; Anm3 *= RECUR_BIG; Bnm3 *= RECUR_BIG; } n++; Bnm3 = Bnm2; Bnm2 = Bnm1; Bnm1 = Bn; Anm3 = Anm2; Anm2 = Anm1; Anm1 = An; } result->val = F; result->err = 2.0 * fabs(prec * F); result->err += 2.0 * GSL_DBL_EPSILON * (n+1.0) * fabs(F); /* FIXME: see above */ result->err *= 8.0 * (fabs(aR) + fabs(aI) + 1.0); stat_iter = (n >= nmax ? GSL_EMAXITER : GSL_SUCCESS ); return stat_iter;}/* Do the reflection described in [Moshier, p. 334]. * Assumes a,b,c != neg integer. */staticinthyperg_2F1_reflect(const double a, const double b, const double c, const double x, gsl_sf_result * result){ const double d = c - a - b; const int intd = floor(d+0.5); const int d_integer = ( fabs(d - intd) < locEPS ); if(d_integer) { const double ln_omx = log(1.0 - x); const double ad = fabs(d); int stat_F2 = GSL_SUCCESS; double sgn_2; gsl_sf_result F1; gsl_sf_result F2; double d1, d2; gsl_sf_result lng_c; gsl_sf_result lng_ad2; gsl_sf_result lng_bd2; int stat_c; int stat_ad2; int stat_bd2; if(d >= 0.0) { d1 = d; d2 = 0.0; } else { d1 = 0.0; d2 = d; } stat_ad2 = gsl_sf_lngamma_e(a+d2, &lng_ad2); stat_bd2 = gsl_sf_lngamma_e(b+d2, &lng_bd2); stat_c = gsl_sf_lngamma_e(c, &lng_c); /* Evaluate F1. */ if(ad < GSL_DBL_EPSILON) { /* d = 0 */ F1.val = 0.0; F1.err = 0.0; } else { gsl_sf_result lng_ad; gsl_sf_result lng_ad1; gsl_sf_result lng_bd1; int stat_ad = gsl_sf_lngamma_e(ad, &lng_ad); int stat_ad1 = gsl_sf_lngamma_e(a+d1, &lng_ad1); int stat_bd1 = gsl_sf_lngamma_e(b+d1, &lng_bd1); if(stat_ad1 == GSL_SUCCESS && stat_bd1 == GSL_SUCCESS && stat_ad == GSL_SUCCESS) { /* Gamma functions in the denominator are ok. * Proceed with evaluation. */ int i; double sum1 = 1.0; double term = 1.0; double ln_pre1_val = lng_ad.val + lng_c.val + d2*ln_omx - lng_ad1.val - lng_bd1.val; double ln_pre1_err = lng_ad.err + lng_c.err + lng_ad1.err + lng_bd1.err + GSL_DBL_EPSILON * fabs(ln_pre1_val); int stat_e; /* Do F1 sum. */ for(i=1; i<ad; i++) { int j = i-1; term *= (a + d2 + j) * (b + d2 + j) / (1.0 + d2 + j) / i * (1.0-x); sum1 += term; } stat_e = gsl_sf_exp_mult_err_e(ln_pre1_val, ln_pre1_err, sum1, GSL_DBL_EPSILON*fabs(sum1), &F1); if(stat_e == GSL_EOVRFLW) { OVERFLOW_ERROR(result); } } else { /* Gamma functions in the denominator were not ok. * So the F1 term is zero. */ F1.val = 0.0; F1.err = 0.0; } } /* end F1 evaluation */ /* Evaluate F2. */ if(stat_ad2 == GSL_SUCCESS && stat_bd2 == GSL_SUCCESS) { /* Gamma functions in the denominator are ok. * Proceed with evaluation. */ const int maxiter = 1000; int i; double psi_1 = -M_EULER; gsl_sf_result psi_1pd; gsl_sf_result psi_apd1; gsl_sf_result psi_bpd1; int stat_1pd = gsl_sf_psi_e(1.0 + ad, &psi_1pd); int stat_apd1 = gsl_sf_psi_e(a + d1, &psi_apd1); int stat_bpd1 = gsl_sf_psi_e(b + d1, &psi_bpd1); int stat_dall = GSL_ERROR_SELECT_3(stat_1pd, stat_apd1, stat_bpd1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -