⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bessel_kn.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/bessel_Kn.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_gamma.h"#include "gsl_sf_psi.h"#include "gsl_sf_bessel.h"#include "error.h"#include "bessel.h"/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*//* [Abramowitz+Stegun, 9.6.11] * assumes n >= 1 */staticintbessel_Kn_scaled_small_x(const int n, const double x, gsl_sf_result * result){  int k;  double y = 0.25 * x * x;  double ln_x_2 = log(0.5*x);  double ex = exp(x);  gsl_sf_result ln_nm1_fact;  double k_term;  double term1, sum1, ln_pre1;  double term2, sum2, pre2;  gsl_sf_lnfact_e((unsigned int)(n-1), &ln_nm1_fact);  ln_pre1 = -n*ln_x_2 + ln_nm1_fact.val;  if(ln_pre1 > GSL_LOG_DBL_MAX - 3.0) GSL_ERROR ("error", GSL_EOVRFLW);  sum1 = 1.0;  k_term = 1.0;  for(k=1; k<=n-1; k++) {    k_term *= -y/(k * (n-k));    sum1 += k_term;  }  term1 = 0.5 * exp(ln_pre1) * sum1;  pre2 = 0.5 * exp(n*ln_x_2);  if(pre2 > 0.0) {    const int KMAX = 20;    gsl_sf_result psi_n;    gsl_sf_result npk_fact;    double yk = 1.0;    double k_fact  = 1.0;    double psi_kp1 = -M_EULER;    double psi_npkp1;    gsl_sf_psi_int_e(n, &psi_n);    gsl_sf_fact_e((unsigned int)n, &npk_fact);    psi_npkp1 = psi_n.val + 1.0/n;    sum2 = (psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/npk_fact.val;    for(k=1; k<KMAX; k++) {      psi_kp1   += 1.0/k;      psi_npkp1 += 1.0/(n+k);      k_fact    *= k;      npk_fact.val *= n+k;      yk *= y;      k_term = yk*(psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/(k_fact*npk_fact.val);      sum2 += k_term;    }    term2 = ( GSL_IS_ODD(n) ? -1.0 : 1.0 ) * pre2 * sum2;  }  else {    term2 = 0.0;  }  result->val  = ex * (term1 + term2);  result->err  = ex * GSL_DBL_EPSILON * (fabs(ln_pre1)*fabs(term1) + fabs(term2));  result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);  return GSL_SUCCESS;}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_bessel_Kn_scaled_e(int n, const double x, gsl_sf_result * result){  n = abs(n); /* K(-n, z) = K(n, z) */  /* CHECK_POINTER(result) */  if(x <= 0.0) {    DOMAIN_ERROR(result);  }  else if(n == 0) {    return gsl_sf_bessel_K0_scaled_e(x, result);  }  else if(n == 1) {    return gsl_sf_bessel_K1_scaled_e(x, result);  }  else if(x <= 5.0) {    return bessel_Kn_scaled_small_x(n, x, result);  }  else if(GSL_ROOT3_DBL_EPSILON * x > 0.25 * (n*n + 1)) {    return gsl_sf_bessel_Knu_scaled_asympx_e((double)n, x, result);  }  else if(GSL_MIN(0.29/(n*n), 0.5/(n*n + x*x)) < GSL_ROOT3_DBL_EPSILON) {    return gsl_sf_bessel_Knu_scaled_asymp_unif_e((double)n, x, result);  }  else {    /* Upward recurrence. [Gradshteyn + Ryzhik, 8.471.1] */    double two_over_x = 2.0/x;    gsl_sf_result r_b_jm1;    gsl_sf_result r_b_j;    int stat_0 = gsl_sf_bessel_K0_scaled_e(x, &r_b_jm1);    int stat_1 = gsl_sf_bessel_K1_scaled_e(x, &r_b_j);    double b_jm1 = r_b_jm1.val;    double b_j   = r_b_j.val;    double b_jp1;    int j;    for(j=1; j<n; j++) {      b_jp1 = b_jm1 + j * two_over_x * b_j;      b_jm1 = b_j;      b_j   = b_jp1;     }         result->val  = b_j;    result->err  = n * (fabs(b_j) * (fabs(r_b_jm1.err/r_b_jm1.val) + fabs(r_b_j.err/r_b_j.val)));    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_ERROR_SELECT_2(stat_0, stat_1);  }}int gsl_sf_bessel_Kn_e(const int n, const double x, gsl_sf_result * result){  const int status = gsl_sf_bessel_Kn_scaled_e(n, x, result);  const double ex = exp(-x);  result->val *= ex;  result->err *= ex;  result->err += x * GSL_DBL_EPSILON * fabs(result->val);  return status;}int gsl_sf_bessel_Kn_scaled_array(const int nmin, const int nmax, const double x, double * result_array){  /* CHECK_POINTER(result_array) */  if(nmin < 0 || nmax < nmin || x <= 0.0) {    int j;    for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0;    GSL_ERROR ("domain error", GSL_EDOM);  }  else if(nmax == 0) {    gsl_sf_result b;    int stat = gsl_sf_bessel_K0_scaled_e(x, &b);    result_array[0] = b.val;    return stat;  }  else {    double two_over_x = 2.0/x;    gsl_sf_result r_Knm1;    gsl_sf_result r_Kn;    int stat_0 = gsl_sf_bessel_Kn_scaled_e(nmin,   x, &r_Knm1);    int stat_1 = gsl_sf_bessel_Kn_scaled_e(nmin+1, x, &r_Kn);    int stat = GSL_ERROR_SELECT_2(stat_0, stat_1);    double Knp1;    double Kn   = r_Kn.val;    double Knm1 = r_Knm1.val;    int n;    for(n=nmin+1; n<=nmax+1; n++) {      if(Knm1 < GSL_DBL_MAX) {        result_array[n-1-nmin] = Knm1;        Knp1 = Knm1 + n * two_over_x * Kn;        Knm1 = Kn;        Kn   = Knp1;      }      else {        /* Overflow. Set the rest of the elements to	 * zero and bug out.	 * FIXME: Note: this relies on the convention	 * that the test x < DBL_MIN fails for x not	 * a number. This may be only an IEEE convention,	 * so the portability is unclear.	 */        int j;	for(j=n; j<=nmax+1; j++) result_array[j-1-nmin] = 0.0;        GSL_ERROR ("overflow", GSL_EOVRFLW);      }    }    return stat;  }}intgsl_sf_bessel_Kn_array(const int nmin, const int nmax, const double x, double * result_array){  int status = gsl_sf_bessel_Kn_scaled_array(nmin, nmax, x, result_array);  double ex = exp(-x);  int i;  for(i=0; i<=nmax-nmin; i++) result_array[i] *= ex;  return status;}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_bessel_Kn_scaled(const int n, const double x){  EVAL_RESULT(gsl_sf_bessel_Kn_scaled_e(n, x, &result));}double gsl_sf_bessel_Kn(const int n, const double x){  EVAL_RESULT(gsl_sf_bessel_Kn_e(n, x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -