⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bessel_in.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/bessel_In.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_bessel.h"#include "error.h"#include "bessel.h"/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/intgsl_sf_bessel_In_scaled_e(int n, const double x, gsl_sf_result * result){  const double ax = fabs(x);  n = abs(n);  /* I(-n, z) = I(n, z) */  /* CHECK_POINTER(result) */  if(n == 0) {    return gsl_sf_bessel_I0_scaled_e(x, result);  }  else if(n == 1) {    return gsl_sf_bessel_I1_scaled_e(x, result);  }  else if(x == 0.0) {    result->val = 0.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(x*x < 10.0*(n+1.0)/M_E) {    gsl_sf_result t;    double ex   = exp(-ax);    int stat_In = gsl_sf_bessel_IJ_taylor_e((double)n, ax, 1, 50, GSL_DBL_EPSILON, &t);    result->val  = t.val * ex;    result->err  = t.err * ex;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val;    return stat_In;  }  else if(n < 150) {    gsl_sf_result I0_scaled;    int stat_I0 = gsl_sf_bessel_I0_scaled_e(ax, &I0_scaled);    double rat;    int stat_CF1 = gsl_sf_bessel_I_CF1_ser((double)n, ax, &rat);    double Ikp1 = rat * GSL_SQRT_DBL_MIN;    double Ik	= GSL_SQRT_DBL_MIN;    double Ikm1;    int k;    for(k=n; k >= 1; k--) {      Ikm1 = Ikp1 + 2.0*k/ax * Ik;      Ikp1 = Ik;      Ik   = Ikm1;    }    result->val  = I0_scaled.val * (GSL_SQRT_DBL_MIN / Ik);    result->err  = I0_scaled.err * (GSL_SQRT_DBL_MIN / Ik);    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val;    return GSL_ERROR_SELECT_2(stat_I0, stat_CF1);  }  else if( GSL_MIN( 0.29/(n*n), 0.5/(n*n + x*x) ) < 0.5*GSL_ROOT3_DBL_EPSILON) {    int stat_as = gsl_sf_bessel_Inu_scaled_asymp_unif_e((double)n, ax, result);    if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val;    return stat_as;  }  else {    const int nhi = 2 + (int) (1.2 / GSL_ROOT6_DBL_EPSILON);    gsl_sf_result r_Ikp1;    gsl_sf_result r_Ik;    int stat_a1 = gsl_sf_bessel_Inu_scaled_asymp_unif_e(nhi+1.0,     ax, &r_Ikp1);    int stat_a2 = gsl_sf_bessel_Inu_scaled_asymp_unif_e((double)nhi, ax, &r_Ik);    double Ikp1 = r_Ikp1.val;    double Ik   = r_Ik.val;    double Ikm1;    int k;    for(k=nhi; k > n; k--) {      Ikm1 = Ikp1 + 2.0*k/ax * Ik;      Ikp1 = Ik;      Ik   = Ikm1;    }    result->val = Ik;    result->err = Ik * (r_Ikp1.err/r_Ikp1.val + r_Ik.err/r_Ik.val);    if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val;    return GSL_ERROR_SELECT_2(stat_a1, stat_a2);  }}intgsl_sf_bessel_In_scaled_array(const int nmin, const int nmax, const double x, double * result_array){  /* CHECK_POINTER(result_array) */  if(nmax < nmin || nmin < 0) {    int j;    for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0;    GSL_ERROR ("domain error", GSL_EDOM);  }  else if(x == 0.0) {    int j;    for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0;    if(nmin == 0) result_array[0] = 1.0;    return GSL_SUCCESS;  }  else if(nmax == 0) {    gsl_sf_result I0_scaled;    int stat = gsl_sf_bessel_I0_scaled_e(x, &I0_scaled);    result_array[0] = I0_scaled.val;    return stat;  }  else {    const double ax = fabs(x);    const double two_over_x = 2.0/ax;    /* starting values */    gsl_sf_result r_Inp1;    gsl_sf_result r_In;    int stat_0 = gsl_sf_bessel_In_scaled_e(nmax+1, ax, &r_Inp1);    int stat_1 = gsl_sf_bessel_In_scaled_e(nmax,   ax, &r_In);    double Inp1 = r_Inp1.val;    double In   = r_In.val;    double Inm1;    int n;    for(n=nmax; n>=nmin; n--) {      result_array[n-nmin] = In;      Inm1 = Inp1 + n * two_over_x * In;      Inp1 = In;      In   = Inm1;    }    /* deal with signs */    if(x < 0.0) {      for(n=nmin; n<=nmax; n++) {        if(GSL_IS_ODD(n)) result_array[n-nmin] = -result_array[n-nmin];      }    }    return GSL_ERROR_SELECT_2(stat_0, stat_1);  }}intgsl_sf_bessel_In_e(const int n_in, const double x, gsl_sf_result * result){  const double ax = fabs(x);  const int n = abs(n_in);  /* I(-n, z) = I(n, z) */  gsl_sf_result In_scaled;  const int stat_In_scaled = gsl_sf_bessel_In_scaled_e(n, ax, &In_scaled);  /* In_scaled is always less than 1,   * so this overflow check is conservative.   */  if(ax > GSL_LOG_DBL_MAX - 1.0) {    OVERFLOW_ERROR(result);  }  else {    const double ex = exp(ax);    result->val  = ex * In_scaled.val;    result->err  = ex * In_scaled.err;    result->err += ax * GSL_DBL_EPSILON * fabs(result->val);    if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val;    return stat_In_scaled;  }}intgsl_sf_bessel_In_array(const int nmin, const int nmax, const double x, double * result_array){  double ax = fabs(x);  /* CHECK_POINTER(result_array) */  if(ax > GSL_LOG_DBL_MAX - 1.0) {    int j;    for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0; /* FIXME: should be Inf */    GSL_ERROR ("overflow", GSL_EOVRFLW);  }  else {    int j;    double eax = exp(ax);    int status = gsl_sf_bessel_In_scaled_array(nmin, nmax, x, result_array);    for(j=0; j<=nmax-nmin; j++) result_array[j] *= eax;    return status;  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_bessel_In_scaled(const int n, const double x){  EVAL_RESULT(gsl_sf_bessel_In_scaled_e(n, x, &result));}double gsl_sf_bessel_In(const int n, const double x){  EVAL_RESULT(gsl_sf_bessel_In_e(n, x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -