⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bessel_j.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/bessel_j.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_pow_int.h"#include "gsl_sf_trig.h"#include "gsl_sf_bessel.h"#include "error.h"#include "bessel.h"#include "bessel_olver.h"/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_bessel_j0_e(const double x, gsl_sf_result * result){  double ax = fabs(x);  /* CHECK_POINTER(result) */  if(ax < 0.5) {    const double y = x*x;    const double c1 = -1.0/6.0;    const double c2 =  1.0/120.0;    const double c3 = -1.0/5040.0;    const double c4 =  1.0/362880.0;    const double c5 = -1.0/39916800.0;    const double c6 =  1.0/6227020800.0;    result->val = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*c6)))));    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    gsl_sf_result sin_result;    const int stat = gsl_sf_sin_e(x, &sin_result);    result->val  = sin_result.val/x;    result->err  = fabs(sin_result.err/x);    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return stat;  }}int gsl_sf_bessel_j1_e(const double x, gsl_sf_result * result){  double ax = fabs(x);  /* CHECK_POINTER(result) */  if(x == 0.0) {    result->val = 0.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(ax < 3.1*GSL_DBL_MIN) {    UNDERFLOW_ERROR(result);  }  else if(ax < 0.25) {    const double y = x*x;    const double c1 = -1.0/10.0;    const double c2 =  1.0/280.0;    const double c3 = -1.0/15120.0;    const double c4 =  1.0/1330560.0;    const double c5 = -1.0/172972800.0;    const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*c5))));    result->val = x/3.0 * sum;    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    gsl_sf_result cos_result;    gsl_sf_result sin_result;    const int stat_cos = gsl_sf_cos_e(x, &cos_result);    const int stat_sin = gsl_sf_sin_e(x, &sin_result);    const double cos_x = cos_result.val;    const double sin_x = sin_result.val;    result->val  = (sin_x/x - cos_x)/x;    result->err  = (fabs(sin_result.err/x) + fabs(cos_result.err))/fabs(x);    result->err += 2.0 * GSL_DBL_EPSILON * (fabs(sin_x/(x*x)) + fabs(cos_x/x));    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_ERROR_SELECT_2(stat_cos, stat_sin);  }}int gsl_sf_bessel_j2_e(const double x, gsl_sf_result * result){  double ax = fabs(x);  /* CHECK_POINTER(result) */    if(x == 0.0) {    result->val = 0.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(ax < 4.0*GSL_SQRT_DBL_MIN) {    UNDERFLOW_ERROR(result);  }  else if(ax < 1.3) {    const double y  = x*x;    const double c1 = -1.0/14.0;    const double c2 =  1.0/504.0;    const double c3 = -1.0/33264.0;    const double c4 =  1.0/3459456.0;    const double c5 = -1.0/518918400;    const double c6 =  1.0/105859353600.0;    const double c7 = -1.0/28158588057600.0;    const double c8 =  1.0/9461285587353600.0;    const double c9 = -1.0/3916972233164390400.0;    const double sum = 1.0+y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*(c6+y*(c7+y*(c8+y*c9))))))));    result->val = y/15.0 * sum;    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    gsl_sf_result cos_result;    gsl_sf_result sin_result;    const int stat_cos = gsl_sf_cos_e(x, &cos_result);    const int stat_sin = gsl_sf_sin_e(x, &sin_result);    const double cos_x = cos_result.val;    const double sin_x = sin_result.val;    const double f = (3.0/(x*x) - 1.0);    result->val  = (f * sin_x - 3.0*cos_x/x)/x;    result->err  = fabs(f * sin_result.err/x) + fabs((3.0*cos_result.err/x)/x);    result->err += 2.0 * GSL_DBL_EPSILON * (fabs(f*sin_x/x) + 3.0*fabs(cos_x/(x*x)));    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_ERROR_SELECT_2(stat_cos, stat_sin);  }}intgsl_sf_bessel_jl_e(const int l, const double x, gsl_sf_result * result){  if(l < 0 || x < 0.0) {    DOMAIN_ERROR(result);  }  else if(x == 0.0) {    result->val = ( l > 0 ? 0.0 : 1.0 );    result->err = 0.0;    return GSL_SUCCESS;  }  else if(l == 0) {    return gsl_sf_bessel_j0_e(x, result);  }  else if(l == 1) {    return gsl_sf_bessel_j1_e(x, result);  }  else if(l == 2) {    return gsl_sf_bessel_j2_e(x, result);  }  else if(x*x < 10.0*(l+0.5)/M_E) {    gsl_sf_result b;    int status = gsl_sf_bessel_IJ_taylor_e(l+0.5, x, -1, 50, GSL_DBL_EPSILON, &b);    double pre   = sqrt((0.5*M_PI)/x);    result->val  = pre * b.val;    result->err  = pre * b.err;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return status;  }  else if(GSL_ROOT3_DBL_EPSILON * x > (l*l + l + 1.0)) {    gsl_sf_result b;    int status = gsl_sf_bessel_Jnu_asympx_e(l + 0.5, x, &b);    double pre = sqrt((0.5*M_PI)/x);    result->val = pre * b.val;    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * b.err;    return status;  }  else if(l > 1.0/GSL_ROOT6_DBL_EPSILON) {    gsl_sf_result b;    int status = gsl_sf_bessel_Jnu_asymp_Olver_e(l + 0.5, x, &b);    double pre = sqrt((0.5*M_PI)/x);    result->val = pre * b.val;    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * b.err;    return status;  }  else {    double sgn;    double ratio;    int stat_CF1 = gsl_sf_bessel_J_CF1(l+0.5, x, &ratio, &sgn);    double jellp1 = GSL_SQRT_DBL_EPSILON * ratio;    double jell   = GSL_SQRT_DBL_EPSILON;    double jellm1;    int ell;    for(ell = l; ell > 0; ell--) {      jellm1 = -jellp1 + (2*ell + 1)/x * jell;      jellp1 = jell;      jell   = jellm1;    }    if(fabs(jell) > fabs(jellp1)) {      gsl_sf_result j0_result;      int stat_j0  = gsl_sf_bessel_j0_e(x, &j0_result);      double pre   = GSL_SQRT_DBL_EPSILON / jell;      result->val  = j0_result.val * pre;      result->err  = j0_result.err * fabs(pre);      result->err += 2.0 * GSL_DBL_EPSILON * (0.5*l + 1.0) * fabs(result->val);      return GSL_ERROR_SELECT_2(stat_j0, stat_CF1);    }    else {      gsl_sf_result j1_result;      int stat_j1  = gsl_sf_bessel_j1_e(x, &j1_result);      double pre   = GSL_SQRT_DBL_EPSILON / jellp1;      result->val  = j1_result.val * pre;      result->err  = j1_result.err * fabs(pre);      result->err += 2.0 * GSL_DBL_EPSILON * (0.5*l + 1.0) * fabs(result->val);      return GSL_ERROR_SELECT_2(stat_j1, stat_CF1);    }  }}intgsl_sf_bessel_jl_array(const int lmax, const double x, double * result_array){  /* CHECK_POINTER(result_array) */  if(lmax < 0 || x < 0.0) {    int j;    for(j=0; j<=lmax; j++) result_array[j] = 0.0;    GSL_ERROR ("error", GSL_EDOM);  }  else if(x == 0.0) {    int j;    for(j=1; j<=lmax; j++) result_array[j] = 0.0;    result_array[0] = 1.0;    return GSL_SUCCESS;  }  else {    gsl_sf_result r_jellp1;    gsl_sf_result r_jell;    int stat_0 = gsl_sf_bessel_jl_e(lmax+1, x, &r_jellp1);    int stat_1 = gsl_sf_bessel_jl_e(lmax,   x, &r_jell);    double jellp1 = r_jellp1.val;    double jell   = r_jell.val;    double jellm1;    int ell;    result_array[lmax] = jell;    for(ell = lmax; ell >= 1; ell--) {      jellm1 = -jellp1 + (2*ell + 1)/x * jell;      jellp1 = jell;      jell   = jellm1;      result_array[ell-1] = jellm1;    }    return GSL_ERROR_SELECT_2(stat_0, stat_1);  }}int gsl_sf_bessel_jl_steed_array(const int lmax, const double x, double * jl_x){  /* CHECK_POINTER(jl_x) */  if(lmax < 0 || x < 0.0) {    int j;    for(j=0; j<=lmax; j++) jl_x[j] = 0.0;    GSL_ERROR ("error", GSL_EDOM);  }  else if(x == 0.0) {    int j;    for(j=1; j<=lmax; j++) jl_x[j] = 0.0;    jl_x[0] = 1.0;    return GSL_SUCCESS;  }  else if(x < 2.0*GSL_ROOT4_DBL_EPSILON) {    /* first two terms of Taylor series */    double inv_fact = 1.0;  /* 1/(1 3 5 ... (2l+1)) */    double x_l      = 1.0;  /* x^l */    int l;    for(l=0; l<=lmax; l++) {      jl_x[l]  = x_l * inv_fact;      jl_x[l] *= 1.0 - 0.5*x*x/(2.0*l+3.0);      inv_fact /= 2.0*l+3.0;      x_l      *= x;    }    return GSL_SUCCESS;  }  else {    /* Steed/Barnett algorithm [Comp. Phys. Comm. 21, 297 (1981)] */    double x_inv = 1.0/x;    double W = 2.0*x_inv;    double F = 1.0;    double FP = (lmax+1.0) * x_inv;    double B = 2.0*FP + x_inv;    double end = B + 20000.0*W;    double D = 1.0/B;    double del = -D;        FP += del;        /* continued fraction */    do {      B += W;      D = 1.0/(B-D);      del *= (B*D - 1.);      FP += del;      if(D < 0.0) F = -F;      if(B > end) {	GSL_ERROR ("error", GSL_EMAXITER);      }    }    while(fabs(del) >= fabs(FP) * GSL_DBL_EPSILON);        FP *= F;        if(lmax > 0) {      /* downward recursion */      double XP2 = FP;      double PL = lmax * x_inv;      int L  = lmax;      int LP;      jl_x[lmax] = F;      for(LP = 1; LP<=lmax; LP++) {	jl_x[L-1] = PL * jl_x[L] + XP2;	FP = PL*jl_x[L-1] - jl_x[L];	XP2 = FP;	PL -= x_inv;	--L;      }      F = jl_x[0];    }        /* normalization */    W = x_inv / sqrt(FP*FP + F*F);    jl_x[0] = W*F;    if(lmax > 0) {      int L;      for(L=1; L<=lmax; L++) {	jl_x[L] *= W;      }    }    return GSL_SUCCESS;  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_bessel_j0(const double x){  EVAL_RESULT(gsl_sf_bessel_j0_e(x, &result));}double gsl_sf_bessel_j1(const double x){  EVAL_RESULT(gsl_sf_bessel_j1_e(x, &result));}double gsl_sf_bessel_j2(const double x){  EVAL_RESULT(gsl_sf_bessel_j2_e(x, &result));}double gsl_sf_bessel_jl(const int l, const double x){  EVAL_RESULT(gsl_sf_bessel_jl_e(l, x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -