⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 legendre_poly.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/legendre_poly.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_bessel.h"#include "gsl_sf_exp.h"#include "gsl_sf_gamma.h"#include "gsl_sf_log.h"#include "gsl_sf_pow_int.h"#include "gsl_sf_legendre.h"#include "error.h"/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/intgsl_sf_legendre_P1_e(double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  {    result->val = x;    result->err = 0.0;    return GSL_SUCCESS;  }}intgsl_sf_legendre_P2_e(double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  {    result->val = 0.5*(3.0*x*x - 1.0);    result->err = GSL_DBL_EPSILON * (fabs(3.0*x*x) + 1.0);    return GSL_SUCCESS;  }}intgsl_sf_legendre_P3_e(double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  {    result->val = 0.5*x*(5.0*x*x - 3.0);    result->err = GSL_DBL_EPSILON * (fabs(result->val) + 0.5 * fabs(x) * (fabs(5.0*x*x) + 3.0));    return GSL_SUCCESS;  }}intgsl_sf_legendre_Pl_e(const int l, const double x, gsl_sf_result * result){   /* CHECK_POINTER(result) */  if(l < 0 || x < -1.0 || x > 1.0) {    DOMAIN_ERROR(result);  }  else if(l == 0) {    result->val = 1.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(l == 1) {    result->val = x;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(l == 2) {    result->val = 0.5 * (3.0*x*x - 1.0);    result->err = 3.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else if(x == 1.0) {    result->val = 1.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(x == -1.0) {    result->val = ( GSL_IS_ODD(l) ? -1.0 : 1.0 );    result->err = 0.0;    return GSL_SUCCESS;  }  else if(l < 100000) {    /* Compute by upward recurrence on l.     */    double p_mm   = 1.0;     /* P_0(x) */    double p_mmp1 = x;	    /* P_1(x) */    double p_ell = p_mmp1;    int ell;    for(ell=2; ell <= l; ell++){      p_ell = (x*(2*ell-1)*p_mmp1 - (ell-1)*p_mm) / ell;      p_mm = p_mmp1;      p_mmp1 = p_ell;    }    result->val = p_ell;    result->err = (0.5 * ell + 1.0) * GSL_DBL_EPSILON * fabs(p_ell);    return GSL_SUCCESS;  }  else {    /* Asymptotic expansion.     * [Olver, p. 473]     */    double u  = l + 0.5;    double th = acos(x);    gsl_sf_result J0;    gsl_sf_result Jm1;    int stat_J0  = gsl_sf_bessel_J0_e(u*th, &J0);    int stat_Jm1 = gsl_sf_bessel_Jn_e(-1, u*th, &Jm1);    double pre;    double B00;    double c1;    /* B00 = 1/8 (1 - th cot(th) / th^2     * pre = sqrt(th/sin(th))     */    if(th < GSL_ROOT4_DBL_EPSILON) {      B00 = (1.0 + th*th/15.0)/24.0;      pre = 1.0 + th*th/12.0;    }    else {      double sin_th = sqrt(1.0 - x*x);      double cot_th = x / sin_th;      B00 = 1.0/8.0 * (1.0 - th * cot_th) / (th*th);      pre = sqrt(th/sin_th);    }    c1 = th/u * B00;    result->val  = pre * (J0.val + c1 * Jm1.val);    result->err  = pre * (J0.err + fabs(c1) * Jm1.err);    result->err += GSL_SQRT_DBL_EPSILON * fabs(result->val);    return GSL_ERROR_SELECT_2(stat_J0, stat_Jm1);  }}intgsl_sf_legendre_Pl_array(const int lmax, const double x, double * result_array){  /* CHECK_POINTER(result_array) */  if(lmax < 0 || x < -1.0 || x > 1.0) {    GSL_ERROR ("domain error", GSL_EDOM);  }  else if(lmax == 0) {    result_array[0] = 1.0;    return GSL_SUCCESS;  }  else if(lmax == 1) {    result_array[0] = 1.0;    result_array[1] = x;    return GSL_SUCCESS;  }  else {    double p_mm   = 1.0;    /* P_0(x) */    double p_mmp1 = x;	    /* P_1(x) */    double p_ell = p_mmp1;    int ell;    result_array[0] = 1.0;    result_array[1] = x;    for(ell=2; ell <= lmax; ell++){      p_ell = (x*(2*ell-1)*p_mmp1 - (ell-1)*p_mm) / ell;      p_mm = p_mmp1;      p_mmp1 = p_ell;      result_array[ell] = p_ell;    }    return GSL_SUCCESS;  }}intgsl_sf_legendre_Plm_e(const int l, const int m, const double x, gsl_sf_result * result){  /* If l is large and m is large, then we have to worry   * about overflow. Calculate an approximate exponent which   * measures the normalization of this thing.   */  double dif = l-m;  double sum = l+m;  double exp_check = 0.5 * log(2.0*l+1.0)                    + 0.5 * dif * (log(dif)-1.0)                   - 0.5 * sum * (log(sum)-1.0);  /* CHECK_POINTER(result) */  if(m < 0 || l < m || x < -1.0 || x > 1.0) {    DOMAIN_ERROR(result);  }  else if(exp_check < GSL_LOG_DBL_MIN + 10.0){    /* Bail out. */    OVERFLOW_ERROR(result);  }  else {    /* Account for the error due to the     * representation of 1-x.     */    const double err_amp = 1.0 / (GSL_DBL_EPSILON + fabs(1.0-fabs(x)));    double p_mm;     /* P_m^m(x) */    double p_mmp1;   /* P_{m+1}^m(x) */    /* Calculate P_m^m from the analytic result:     *          P_m^m(x) = (-1)^m (2m-1)!! (1-x^2)^(m/2) , m > 0     */    p_mm = 1.0;    if(m > 0){      double root_factor = sqrt(1.0-x)*sqrt(1.0+x);      double fact_coeff = 1.0;      int i;      for(i=1; i<=m; i++) {        p_mm *= -fact_coeff * root_factor;        fact_coeff += 2.0;      }    }    /* Calculate P_{m+1}^m. */    p_mmp1 = x * (2*m + 1) * p_mm;    if(l == m){      result->val = p_mm;      result->err = err_amp * 2.0 * GSL_DBL_EPSILON * fabs(p_mm);      return GSL_SUCCESS;    }    else if(l == m + 1) {      result->val = p_mmp1;      result->err = err_amp * 2.0 * GSL_DBL_EPSILON * fabs(p_mmp1);      return GSL_SUCCESS;    }    else{      double p_ell = 0.0;      int ell;          /* Compute P_l^m, l > m+1 by upward recurrence on l. */      for(ell=m+2; ell <= l; ell++){        p_ell = (x*(2*ell-1)*p_mmp1 - (ell+m-1)*p_mm) / (ell-m);        p_mm = p_mmp1;        p_mmp1 = p_ell;      }      result->val = p_ell;      result->err = err_amp * (0.5*(l-m) + 1.0) * GSL_DBL_EPSILON * fabs(p_ell);      return GSL_SUCCESS;    }  }}intgsl_sf_legendre_Plm_array(const int lmax, const int m, const double x, double * result_array){  /* If l is large and m is large, then we have to worry   * about overflow. Calculate an approximate exponent which   * measures the normalization of this thing.   */  double dif = lmax-m;  double sum = lmax+m;  double exp_check = 0.5 * log(2.0*lmax+1.0)                      + 0.5 * dif * (log(dif)-1.0)                     - 0.5 * sum * (log(sum)-1.0);  /* CHECK_POINTER(result_array) */  if(m < 0 || lmax < m || x < -1.0 || x > 1.0) {    GSL_ERROR ("error", GSL_EDOM);  }  else if(m > 0 && (x == 1.0 || x == -1.0)) {    int ell;    for(ell=m; ell<=lmax; ell++) result_array[ell-m] = 0.0;    return GSL_SUCCESS;  }  else if(exp_check < GSL_LOG_DBL_MIN + 10.0){    /* Bail out.     */    GSL_ERROR ("error", GSL_EOVRFLW);  }  else {    double p_mm;                 /* P_m^m(x)     */    double p_mmp1;               /* P_{m+1}^m(x) */    /* Calculate P_m^m from the analytic result:     *          P_m^m(x) = (-1)^m (2m-1)!! (1-x^2)^(m/2) , m > 0     */    p_mm = 1.0;    if(m > 0){      double root_factor = sqrt(1.0-x)*sqrt(1.0+x);      double fact_coeff = 1.0;      int i;      for(i=1; i<=m; i++){        p_mm *= -fact_coeff * root_factor;        fact_coeff += 2.0;      }    }    /* Calculate P_{m+1}^m. */    p_mmp1 = x * (2*m + 1) * p_mm;    if(lmax == m){      result_array[0] = p_mm;      return GSL_SUCCESS;    }    else if(lmax == m + 1) {      result_array[0] = p_mm;      result_array[1] = p_mmp1;      return GSL_SUCCESS;    }    else{      double p_ell;      int ell;      result_array[0] = p_mm;      result_array[1] = p_mmp1;      /* Compute P_l^m, l >= m+2, by upward recursion on l. */      for(ell=m+2; ell <= lmax; ell++){        p_ell = (x*(2*ell-1)*p_mmp1 - (ell+m-1)*p_mm) / (ell-m);        p_mm = p_mmp1;        p_mmp1 = p_ell;        result_array[ell-m] = p_ell;      }      return GSL_SUCCESS;    }  }}intgsl_sf_legendre_sphPlm_e(const int l, int m, const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(m < 0 || l < m || x < -1.0 || x > 1.0) {    DOMAIN_ERROR(result);  }  else if(m == 0) {    gsl_sf_result P;    int stat_P = gsl_sf_legendre_Pl_e(l, x, &P);    double pre = sqrt((2.0*l + 1.0)/(4.0*M_PI));    result->val  = pre * P.val;    result->err  = pre * P.err;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return stat_P;  }  else if(x == 1.0 || x == -1.0) {    /* m > 0 here */    result->val = 0.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else {    /* m > 0 and |x| < 1 here */    /* Starting value for recursion.     * Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) ) (-1)^m (1-x^2)^(m/2) / pi^(1/4)     */    gsl_sf_result lncirc;    gsl_sf_result lnpoch;    double lnpre_val;    double lnpre_err;    gsl_sf_result ex_pre;    double sr;    const double sgn = ( GSL_IS_ODD(m) ? -1.0 : 1.0);    const double y_mmp1_factor = x * sqrt(2.0*m + 3.0);    double y_mm, y_mm_err;    double y_mmp1;    gsl_sf_log_1plusx_e(-x*x, &lncirc);    gsl_sf_lnpoch_e(m, 0.5, &lnpoch);  /* Gamma(m+1/2)/Gamma(m) */    lnpre_val = -0.25*M_LNPI + 0.5 * (lnpoch.val + m*lncirc.val);    lnpre_err = 0.25*M_LNPI*GSL_DBL_EPSILON + 0.5 * (lnpoch.err + fabs(m)*lncirc.err);    gsl_sf_exp_err_e(lnpre_val, lnpre_err, &ex_pre);    sr    = sqrt((2.0+1.0/m)/(4.0*M_PI));    y_mm   = sgn * sr * ex_pre.val;    y_mmp1 = y_mmp1_factor * y_mm;    y_mm_err  = 2.0 * GSL_DBL_EPSILON * fabs(y_mm) + sr * ex_pre.err;    y_mm_err *= 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-x));    if(l == m){      result->val  = y_mm;      result->err  = y_mm_err;      result->err += 2.0 * GSL_DBL_EPSILON * fabs(y_mm);      return GSL_SUCCESS;    }    else if(l == m + 1) {      result->val  = y_mmp1;      result->err  = fabs(y_mmp1_factor) * y_mm_err;      result->err += 2.0 * GSL_DBL_EPSILON * fabs(y_mmp1);      return GSL_SUCCESS;    }    else{      double y_ell = 0.0;      int ell;      /* Compute Y_l^m, l > m+1, upward recursion on l. */      for(ell=m+2; ell <= l; ell++){        const double rat1 = (double)(ell-m)/(double)(ell+m);	const double rat2 = (ell-m-1.0)/(ell+m-1.0);        const double factor1 = sqrt(rat1*(2*ell+1)*(2*ell-1));        const double factor2 = sqrt(rat1*rat2*(2*ell+1)/(2*ell-3));        y_ell = (x*y_mmp1*factor1 - (ell+m-1)*y_mm*factor2) / (ell-m);        y_mm   = y_mmp1;        y_mmp1 = y_ell;      }      result->val  = y_ell;      result->err  = (0.5*(l-m) + 1.0) * GSL_DBL_EPSILON * fabs(y_ell);      result->err += fabs(y_mm_err/y_mm) * fabs(y_ell);      return GSL_SUCCESS;    }  }}intgsl_sf_legendre_sphPlm_array(const int lmax, int m, const double x, double * result_array){  /* CHECK_POINTER(result_array) */  if(m < 0 || lmax < m || x < -1.0 || x > 1.0) {    GSL_ERROR ("error", GSL_EDOM);  }  else if(m > 0 && (x == 1.0 || x == -1.0)) {    int ell;    for(ell=m; ell<=lmax; ell++) result_array[ell-m] = 0.0;    return GSL_SUCCESS;  }  else {    double y_mm;    double y_mmp1;    if(m == 0) {      y_mm   = 0.5/M_SQRTPI;          /* Y00 = 1/sqrt(4pi) */      y_mmp1 = x * M_SQRT3 * y_mm;    }    else {      /* |x| < 1 here */      gsl_sf_result lncirc;      gsl_sf_result lnpoch;      double lnpre;      const double sgn = ( GSL_IS_ODD(m) ? -1.0 : 1.0);      gsl_sf_log_1plusx_e(-x*x, &lncirc);      gsl_sf_lnpoch_e(m, 0.5, &lnpoch);  /* Gamma(m+1/2)/Gamma(m) */      lnpre = -0.25*M_LNPI + 0.5 * (lnpoch.val + m*lncirc.val);      y_mm   = sqrt((2.0+1.0/m)/(4.0*M_PI)) * sgn * exp(lnpre);      y_mmp1 = x * sqrt(2.0*m + 3.0) * y_mm;    }    if(lmax == m){      result_array[0] = y_mm;      return GSL_SUCCESS;    }    else if(lmax == m + 1) {      result_array[0] = y_mm;      result_array[1] = y_mmp1;      return GSL_SUCCESS;    }    else{      double y_ell;      int ell;      result_array[0] = y_mm;      result_array[1] = y_mmp1;      /* Compute Y_l^m, l > m+1, upward recursion on l. */      for(ell=m+2; ell <= lmax; ell++){        const double rat1 = (double)(ell-m)/(double)(ell+m);	const double rat2 = (ell-m-1.0)/(ell+m-1.0);        const double factor1 = sqrt(rat1*(2*ell+1)*(2*ell-1));        const double factor2 = sqrt(rat1*rat2*(2*ell+1)/(2*ell-3));        y_ell = (x*y_mmp1*factor1 - (ell+m-1)*y_mm*factor2) / (ell-m);        y_mm   = y_mmp1;        y_mmp1 = y_ell;	result_array[ell-m] = y_ell;      }    }    return GSL_SUCCESS;  }}#ifndef HIDE_INLINE_STATICintgsl_sf_legendre_array_size(const int lmax, const int m){  return lmax-m+1;}#endif/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_legendre_P1(const double x){  EVAL_RESULT(gsl_sf_legendre_P1_e(x, &result));}double gsl_sf_legendre_P2(const double x){  EVAL_RESULT(gsl_sf_legendre_P2_e(x, &result));}double gsl_sf_legendre_P3(const double x){  EVAL_RESULT(gsl_sf_legendre_P3_e(x, &result));}double gsl_sf_legendre_Pl(const int l, const double x){  EVAL_RESULT(gsl_sf_legendre_Pl_e(l, x, &result));}double gsl_sf_legendre_Plm(const int l, const int m, const double x){  EVAL_RESULT(gsl_sf_legendre_Plm_e(l, m, x, &result));}double gsl_sf_legendre_sphPlm(const int l, const int m, const double x){  EVAL_RESULT(gsl_sf_legendre_sphPlm_e(l, m, x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -