⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bessel_j1.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/bessel_J1.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_trig.h"#include "gsl_sf_bessel.h"#include "error.h"#include "bessel.h"#include "bessel_amp_phase.h"#include "cheb_eval.c"#define ROOT_EIGHT (2.0*M_SQRT2)/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*//* based on SLATEC besj1, 1983 version, w. fullerton *//* chebyshev expansions series for bj1        on the interval  0.	    to  1.60000d+01					with weighted error   4.48e-17					 log weighted error  16.35			       significant figures required  15.77				    decimal places required  16.89*/static double bj1_data[12] = {  -0.11726141513332787,  -0.25361521830790640,   0.050127080984469569,  -0.004631514809625081,   0.000247996229415914,  -0.000008678948686278,   0.000000214293917143,  -0.000000003936093079,   0.000000000055911823,  -0.000000000000632761,   0.000000000000005840,  -0.000000000000000044,};static cheb_series bj1_cs = {  bj1_data,  11,  -1, 1,  8};/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_bessel_J1_e(const double x, gsl_sf_result * result){  double y = fabs(x);  /* CHECK_POINTER(result) */  if(y == 0.0) {    result->val = 0.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(y < 2.0*GSL_DBL_MIN) {    UNDERFLOW_ERROR(result);  }  else if(y < ROOT_EIGHT * GSL_SQRT_DBL_EPSILON) {    result->val = 0.5*x;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(y < 4.0) {    gsl_sf_result c;    cheb_eval_e(&bj1_cs, 0.125*y*y-1.0, &c);    result->val = x * (0.25 + c.val);    result->err = fabs(x * c.err);    return GSL_SUCCESS;  }  else {    /* Because the leading term in the phase is y,     * which we assume is exactly known, the error     * in the cos() evaluation is bounded.     */    const double z  = 32.0/(y*y) - 1.0;    gsl_sf_result ca;    gsl_sf_result ct;    gsl_sf_result sp;    const int stat_ca = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bm1_cs,  z, &ca);    const int stat_ct = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bth1_cs, z, &ct);    const int stat_sp = gsl_sf_bessel_sin_pi4_e(y, ct.val/y, &sp);    const double sqrty = sqrt(y);    const double ampl  = (0.75 + ca.val) / sqrty;    result->val  = (x < 0.0 ? -ampl : ampl) * sp.val;    result->err  = fabs(sp.val) * ca.err/sqrty + fabs(ampl) * sp.err;    result->err += GSL_DBL_EPSILON * fabs(result->val);    return GSL_ERROR_SELECT_3(stat_ca, stat_ct, stat_sp);  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_bessel_J1(const double x){  EVAL_RESULT(gsl_sf_bessel_J1_e(x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -