📄 hyperg_u.c
字号:
const double xi = istrt + i; const double xi1 = istrt + i - 1; const double tmp = (a-1.0)*(xn+2.0*xi-1.0) + xi*(xi-beps); const double b0_multiplier = (a+xi1-beps)*x/((xn+xi1)*(xi-beps)); const double c0_multiplier_1 = (a+xi1)*x/((b+xi1)*xi); const double c0_multiplier_2 = tmp / (xi*(b+xi1)*(a+xi1-beps)); b0_val *= b0_multiplier; b0_err += fabs(b0_multiplier) * b0_err + fabs(b0_val) * 8.0 * 2.0 * GSL_DBL_EPSILON; c0_val = c0_multiplier_1 * c0_val - c0_multiplier_2 * b0_val; c0_err = fabs(c0_multiplier_1) * c0_err + fabs(c0_multiplier_2) * b0_err + fabs(c0_val) * 8.0 * 2.0 * GSL_DBL_EPSILON + fabs(b0_val * c0_multiplier_2) * 16.0 * 2.0 * GSL_DBL_EPSILON; t_val = c0_val + xeps1_val*b0_val; t_err = c0_err + fabs(xeps1_val)*b0_err; t_err += fabs(b0_val*lnx) * dexprl.err; t_err += fabs(b0_val)*xeps1_err; dchu_val += t_val; dchu_err += t_err; if(fabs(t_val) < EPS*fabs(dchu_val)) break; } result->val = dchu_val; result->err = 2.0 * dchu_err; result->err += 2.0 * fabs(t_val); result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val); result->err *= 2.0; /* FIXME: fudge factor */ if(i >= 2000) { GSL_ERROR ("error", GSL_EMAXITER); } else { return stat_all; } } else { /* C X**(-BEPS) IS VERY DIFFERENT FROM 1.0, SO THE C STRAIGHTFORWARD FORMULATION IS STABLE. */ int i; double dchu_val; double dchu_err; double t_val; double t_err; gsl_sf_result dgamrbxi; int stat_dgamrbxi = gsl_sf_gammainv_e(b+xi, &dgamrbxi); double a0_val = factor_val * pochai.val * dgamrbxi.val * gamri1.val / beps; double a0_err = fabs(factor_val * pochai.val * dgamrbxi.val / beps) * gamri1.err + fabs(factor_val * pochai.val * gamri1.val / beps) * dgamrbxi.err + fabs(factor_val * dgamrbxi.val * gamri1.val / beps) * pochai.err + fabs(pochai.val * dgamrbxi.val * gamri1.val / beps) * factor_err + 2.0 * GSL_DBL_EPSILON * fabs(a0_val); stat_all = GSL_ERROR_SELECT_2(stat_all, stat_dgamrbxi); b0_val = xeps * b0_val / beps; b0_err = fabs(xeps / beps) * b0_err + 4.0 * GSL_DBL_EPSILON * fabs(b0_val); dchu_val = sum.val + a0_val - b0_val; dchu_err = sum.err + a0_err + b0_err + 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(a0_val) + fabs(b0_val)); for(i=1; i<2000; i++) { double xi = istrt + i; double xi1 = istrt + i - 1; double a0_multiplier = (a+xi1)*x/((b+xi1)*xi); double b0_multiplier = (a+xi1-beps)*x/((aintb+xi1)*(xi-beps)); a0_val *= a0_multiplier; a0_err += fabs(a0_multiplier) * a0_err; b0_val *= b0_multiplier; b0_err += fabs(b0_multiplier) * b0_err; t_val = a0_val - b0_val; t_err = a0_err + b0_err; dchu_val += t_val; dchu_err += t_err; if(fabs(t_val) < EPS*fabs(dchu_val)) break; } result->val = dchu_val; result->err = 2.0 * dchu_err; result->err += 2.0 * fabs(t_val); result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val); result->err *= 2.0; /* FIXME: fudge factor */ if(i >= 2000) { GSL_ERROR ("error", GSL_EMAXITER); } else { return stat_all; } } }}/* Assumes b > 0 and x > 0. */staticinthyperg_U_small_ab(const double a, const double b, const double x, gsl_sf_result * result){ if(a == -1.0) { /* U(-1,c+1,x) = Laguerre[c,0,x] = -b + x */ result->val = -b + x; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(b) + fabs(x)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(a == 0.0) { /* U(0,c+1,x) = Laguerre[c,0,x] = 1 */ result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(ASYMP_EVAL_OK(a,b,x)) { double p = pow(x, -a); gsl_sf_result asymp; int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp); result->val = asymp.val * p; result->err = asymp.err * p; result->err += fabs(asymp.val) * GSL_DBL_EPSILON * fabs(a) * p; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_asymp; } else { return hyperg_U_series(a, b, x, result); }}/* Assumes b > 0 and x > 0. */staticinthyperg_U_small_a_bgt0(const double a, const double b, const double x, gsl_sf_result * result, double * ln_multiplier ){ if(a == 0.0) { result->val = 1.0; result->err = 1.0; *ln_multiplier = 0.0; return GSL_SUCCESS; } else if( (b > 5000.0 && x < 0.90 * fabs(b)) || (b > 500.0 && x < 0.50 * fabs(b)) ) { int stat = gsl_sf_hyperg_U_large_b_e(a, b, x, result, ln_multiplier); if(stat == GSL_EOVRFLW) return GSL_SUCCESS; else return stat; } else if(b > 15.0) { /* Recurse up from b near 1. */ double eps = b - floor(b); double b0 = 1.0 + eps; gsl_sf_result r_Ubm1; gsl_sf_result r_Ub; int stat_0 = hyperg_U_small_ab(a, b0, x, &r_Ubm1); int stat_1 = hyperg_U_small_ab(a, b0+1.0, x, &r_Ub); double Ubm1 = r_Ubm1.val; double Ub = r_Ub.val; double Ubp1; double bp; for(bp = b0+1.0; bp<b-0.1; bp += 1.0) { Ubp1 = ((1.0+a-bp)*Ubm1 + (bp+x-1.0)*Ub)/x; Ubm1 = Ub; Ub = Ubp1; } result->val = Ub; result->err = (fabs(r_Ubm1.err/r_Ubm1.val) + fabs(r_Ub.err/r_Ub.val)) * fabs(Ub); result->err += 2.0 * GSL_DBL_EPSILON * (fabs(b-b0)+1.0) * fabs(Ub); *ln_multiplier = 0.0; return GSL_ERROR_SELECT_2(stat_0, stat_1); } else { *ln_multiplier = 0.0; return hyperg_U_small_ab(a, b, x, result); }}/* We use this to keep track of large * dynamic ranges in the recursions. * This can be important because sometimes * we want to calculate a very large and * a very small number and the answer is * the product, of order 1. This happens, * for instance, when we apply a Kummer * transform to make b positive and * both x and b are large. */#define RESCALE_2(u0,u1,factor,count) \do { \ double au0 = fabs(u0); \ if(au0 > factor) { \ u0 /= factor; \ u1 /= factor; \ count++; \ } \ else if(au0 < 1.0/factor) { \ u0 *= factor; \ u1 *= factor; \ count--; \ } \} while (0)/* Specialization to b >= 1, for integer parameters. * Assumes x > 0. */staticinthyperg_U_int_bge1(const int a, const int b, const double x, gsl_sf_result_e10 * result){ if(a == 0) { result->val = 1.0; result->err = 0.0; result->e10 = 0; return GSL_SUCCESS; } else if(a == -1) { result->val = -b + x; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(b) + fabs(x)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->e10 = 0; return GSL_SUCCESS; } else if(b == a + 1) { /* U(a,a+1,x) = x^(-a) */ return gsl_sf_exp_e10_e(-a*log(x), result); } else if(ASYMP_EVAL_OK(a,b,x)) { const double ln_pre_val = -a*log(x); const double ln_pre_err = 2.0 * GSL_DBL_EPSILON * fabs(ln_pre_val); gsl_sf_result asymp; int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp); int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val, ln_pre_err, asymp.val, asymp.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_asymp); } else if(SERIES_EVAL_OK(a,b,x)) { gsl_sf_result ser; const int stat_ser = hyperg_U_series(a, b, x, &ser); result->val = ser.val; result->err = ser.err; result->e10 = 0; return stat_ser; } else if(a < 0) { /* Recurse backward from a = -1,0. */ int scale_count = 0; const double scale_factor = GSL_SQRT_DBL_MAX; gsl_sf_result lnm; gsl_sf_result y; double lnscale; double Uap1 = 1.0; /* U(0,b,x) */ double Ua = -b + x; /* U(-1,b,x) */ double Uam1; int ap; for(ap=-1; ap>a; ap--) { Uam1 = ap*(b-ap-1.0)*Uap1 + (x+2.0*ap-b)*Ua; Uap1 = Ua; Ua = Uam1; RESCALE_2(Ua,Uap1,scale_factor,scale_count); } lnscale = log(scale_factor); lnm.val = scale_count*lnscale; lnm.err = 2.0 * GSL_DBL_EPSILON * fabs(lnm.val); y.val = Ua; y.err = 4.0 * GSL_DBL_EPSILON * (fabs(a)+1.0) * fabs(Ua); return gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result); } else if(b >= 2.0*a + x) { /* Recurse forward from a = 0,1. */ int scale_count = 0; const double scale_factor = GSL_SQRT_DBL_MAX; gsl_sf_result r_Ua; gsl_sf_result lnm; gsl_sf_result y; double lnscale; double lm; int stat_1 = hyperg_U_small_a_bgt0(1.0, b, x, &r_Ua, &lm); /* U(1,b,x) */ int stat_e; double Uam1 = 1.0; /* U(0,b,x) */ double Ua = r_Ua.val; double Uap1; int ap; Uam1 *= exp(-lm); for(ap=1; ap<a; ap++) { Uap1 = -(Uam1 + (b-2.0*ap-x)*Ua)/(ap*(1.0+ap-b)); Uam1 = Ua; Ua = Uap1; RESCALE_2(Ua,Uam1,scale_factor,scale_count); } lnscale = log(scale_factor); lnm.val = lm + scale_count * lnscale; lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm) + fabs(scale_count*lnscale)); y.val = Ua; y.err = fabs(r_Ua.err/r_Ua.val) * fabs(Ua); y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a) + 1.0) * fabs(Ua); stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_1); } else { if(b <= x) { /* Recurse backward either to the b=a+1 line * or to a=0, whichever we hit. */ const double scale_factor = GSL_SQRT_DBL_MAX; int scale_count = 0; int stat_CF1; double ru; int CF1_count; int a_target; double lnU_target; double Ua; double Uap1; double Uam1; int ap; if(b < a + 1) { a_target = b-1; lnU_target = -a_target*log(x); } else { a_target = 0; lnU_target = 0.0; } stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count); Ua = 1.0; Uap1 = ru/a * Ua; for(ap=a; ap>a_target; ap--) { Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1); Uap1 = Ua; Ua = Uam1; RESCALE_2(Ua,Uap1,scale_factor,scale_count); } if(Ua == 0.0) { result->val = 0.0; result->err = 0.0; result->e10 = 0; GSL_ERROR ("error", GSL_EZERODIV); } else { double lnscl = -scale_count*log(scale_factor); double lnpre_val = lnU_target + lnscl; double lnpre_err = 2.0 * GSL_DBL_EPSILON * (fabs(lnU_target) + fabs(lnscl)); double oUa_err = 2.0 * (fabs(a_target-a) + CF1_count + 1.0) * GSL_DBL_EPSILON * fabs(1.0/Ua); int stat_e = gsl_sf_exp_mult_err_e10_e(lnpre_val, lnpre_err, 1.0/Ua, oUa_err, result); return GSL_ERROR_SELECT_2(stat_e, stat_CF1); } } else { /* Recurse backward to near the b=2a+x line, then * determine normalization by either direct evaluation * or by a forward recursion. The direct evaluation * is needed when x is small (which is precisely * when it is easy to do). */ const double scale_factor = GSL_SQRT_DBL_MAX; int scale_count_for = 0; int scale_count_bck = 0; int a0 = 1; int a1 = a0 + ceil(0.5*(b-x) - a0); double Ua1_bck_val; double Ua1_bck_err; double Ua1_for_val; double Ua1_for_err; int stat_for; int stat_bck; gsl_sf_result lm_for; { /* Recurse back to determine U(a1,b), sans normalization. */ double ru; int CF1_count; int stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count); double Ua = 1.0; double Uap1 = ru/a * Ua; double Uam1; int ap; for(ap=a; ap>a1; ap--) { Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1); Uap1 = Ua; Ua = Uam1; RESCALE_2(Ua,Uap1,scale_factor,scale_count_bck); } Ua1_bck_val = Ua; Ua1_bck_err = 2.0 * GSL_DBL_EPSILON * (fabs(a1-a)+CF1_count+1.0) * fabs(Ua); stat_bck = stat_CF1; } if(b == 2*a1 && a1 > 1) { /* This can happen when x is small, which is * precisely when we need to be careful with * this evaluation. */ hyperg_lnU_beq2a((double)a1, x, &lm_for); Ua1_for_val = 1.0; Ua1_for_err = 0.0; stat_for = GSL_SUCCESS; } else if(b == 2*a1 - 1 && a1 > 1) { /* Similar to the above. Happens when x is small. * Use * U(a,2a-1) = (x U(a,2a) - U(a-1,2(a-1))) / (2a - 2) */ gsl_sf_result lnU00, lnU12; gsl_sf_result U00, U12; hyperg_lnU_beq2a(a1-1.0, x, &lnU00); hyperg_lnU_beq2a(a1, x, &lnU12); if(lnU00.val > lnU12.val) { lm_for.val = lnU00.val; lm_for.err = lnU00.err; U00.val = 1.0; U00.err = 0.0; gsl_sf_exp_err_e(lnU12.val - lm_for.val, lnU12.err + lm_for.err, &U12); } else { lm_for.val = lnU12.val; lm_for.err = lnU12.err; U12.val = 1.0; U12.err = 0.0; gsl_sf_exp_err_e(lnU00.val - lm_for.val, lnU00.err + lm_for.err, &U00); } Ua1_for_val = (x * U12.val - U00.val) / (2.0*a1 - 2.0); Ua1_for_err = (fabs(x)*U12.err + U00.err) / fabs(2.0*a1 - 2.0); Ua1_for_err += 2.0 * GSL_DBL_EPSILON * fabs(Ua1_for_val); stat_for = GSL_SUCCESS; } else { /* Recurse forward to determine U(a1,b) with * absolute normalization. */ gsl_sf_result r_Ua; double Uam1 = 1.0; /* U(a0-1,b,x) = U(0,b,x) */ double Ua; double Uap1; int ap; double lm_for_local; stat_for = hyperg_U_small_a_bgt0(a0, b, x, &r_Ua, &lm_for_local); /* U(1,b,x) */ Ua = r_Ua.val; Uam1 *= exp(-lm_for_local); lm_for.val = lm_for_local; lm_for.err = 0.0; for(ap=a0; ap<a1; ap++) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -