📄 hyperg_u.c
字号:
/* specfunc/hyperg_U.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_exp.h"#include "gsl_sf_gamma.h"#include "gsl_sf_bessel.h"#include "gsl_sf_laguerre.h"#include "gsl_sf_pow_int.h"#include "gsl_sf_hyperg.h"#include "error.h"#include "hyperg.h"#define INT_THRESHOLD (1000.0*GSL_DBL_EPSILON)#define SERIES_EVAL_OK(a,b,x) ((fabs(a) < 5 && b < 5 && x < 2.0) || (fabs(a) < 10 && b < 10 && x < 1.0))#define ASYMP_EVAL_OK(a,b,x) (GSL_MAX_DBL(fabs(a),1.0)*GSL_MAX_DBL(fabs(1.0+a-b),1.0) < 0.99*fabs(x))/* Log[U(a,2a,x)] * [Abramowitz+stegun, 13.6.21] * Assumes x > 0, a > 1/2. */staticinthyperg_lnU_beq2a(const double a, const double x, gsl_sf_result * result){ const double lx = log(x); const double nu = a - 0.5; const double lnpre = 0.5*(x - M_LNPI) - nu*lx; gsl_sf_result lnK; gsl_sf_bessel_lnKnu_e(nu, 0.5*x, &lnK); result->val = lnpre + lnK.val; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(0.5*x) + 0.5*M_LNPI + fabs(nu*lx)); result->err += lnK.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS;}/* Evaluate u_{N+1}/u_N by Steed's continued fraction method. * * u_N := Gamma[a+N]/Gamma[a] U(a + N, b, x) * * u_{N+1}/u_N = (a+N) U(a+N+1,b,x)/U(a+N,b,x) */staticinthyperg_U_CF1(const double a, const double b, const int N, const double x, double * result, int * count){ const double RECUR_BIG = GSL_SQRT_DBL_MAX; const int maxiter = 20000; int n = 1; double Anm2 = 1.0; double Bnm2 = 0.0; double Anm1 = 0.0; double Bnm1 = 1.0; double a1 = -(a + N); double b1 = (b - 2.0*a - x - 2.0*(N+1)); double An = b1*Anm1 + a1*Anm2; double Bn = b1*Bnm1 + a1*Bnm2; double an, bn; double fn = An/Bn; while(n < maxiter) { double old_fn; double del; n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; an = -(a + N + n - b)*(a + N + n - 1.0); bn = (b - 2.0*a - x - 2.0*(N+n)); An = bn*Anm1 + an*Anm2; Bn = bn*Bnm1 + an*Bnm2; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break; } *result = fn; *count = n; if(n == maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS;}/* Large x asymptotic for x^a U(a,b,x) * Based on SLATEC D9CHU() [W. Fullerton] * * Uses a rational approximation due to Luke. * See [Luke, Algorithms for the Computation of Special Functions, p. 252] * [Luke, Utilitas Math. (1977)] * * z^a U(a,b,z) ~ 2F0(a,1+a-b,-1/z) * * This assumes that a is not a negative integer and * that 1+a-b is not a negative integer. If one of them * is, then the 2F0 actually terminates, the above * relation is an equality, and the sum should be * evaluated directly [see below]. */staticintd9chu(const double a, const double b, const double x, gsl_sf_result * result){ const double EPS = 8.0 * GSL_DBL_EPSILON; /* EPS = 4.0D0*D1MACH(4) */ const int maxiter = 500; double aa[4], bb[4]; int i; double bp = 1.0 + a - b; double ab = a*bp; double ct2 = 2.0 * (x - ab); double sab = a + bp; double ct3 = sab + 1.0 + ab; double anbn = ct3 + sab + 3.0; double ct1 = 1.0 + 2.0*x/anbn; bb[0] = 1.0; aa[0] = 1.0; bb[1] = 1.0 + 2.0*x/ct3; aa[1] = 1.0 + ct2/ct3; bb[2] = 1.0 + 6.0*ct1*x/ct3; aa[2] = 1.0 + 6.0*ab/anbn + 3.0*ct1*ct2/ct3; for(i=4; i<maxiter; i++) { int j; double c2; double d1z; double g1, g2, g3; double x2i1 = 2*i - 3; ct1 = x2i1/(x2i1-2.0); anbn += x2i1 + sab; ct2 = (x2i1 - 1.0)/anbn; c2 = x2i1*ct2 - 1.0; d1z = 2.0*x2i1*x/anbn; ct3 = sab*ct2; g1 = d1z + ct1*(c2+ct3); g2 = d1z - c2; g3 = ct1*(1.0 - ct3 - 2.0*ct2); bb[3] = g1*bb[2] + g2*bb[1] + g3*bb[0]; aa[3] = g1*aa[2] + g2*aa[1] + g3*aa[0]; if(fabs(aa[3]*bb[0]-aa[0]*bb[3]) < EPS*fabs(bb[3]*bb[0])) break; for(j=0; j<3; j++) { aa[j] = aa[j+1]; bb[j] = bb[j+1]; } } result->val = aa[3]/bb[3]; result->err = 8.0 * GSL_DBL_EPSILON * fabs(result->val); if(i == maxiter) { GSL_ERROR ("error", GSL_EMAXITER); } else { return GSL_SUCCESS; }}/* Evaluate asymptotic for z^a U(a,b,z) ~ 2F0(a,1+a-b,-1/z) * We check for termination of the 2F0 as a special case. * Assumes x > 0. * Also assumes a,b are not too large compared to x. */staticinthyperg_zaU_asymp(const double a, const double b, const double x, gsl_sf_result *result){ const double ap = a; const double bp = 1.0 + a - b; const double rintap = floor(ap + 0.5); const double rintbp = floor(bp + 0.5); const int ap_neg_int = ( ap < 0.0 && fabs(ap - rintap) < INT_THRESHOLD ); const int bp_neg_int = ( bp < 0.0 && fabs(bp - rintbp) < INT_THRESHOLD ); if(ap_neg_int || bp_neg_int) { /* Evaluate 2F0 polynomial. */ double mxi = -1.0/x; double nmax = -(int)(GSL_MIN(ap,bp) - 0.1); double tn = 1.0; double sum = 1.0; double n = 1.0; double sum_err = 0.0; while(n <= nmax) { double apn = (ap+n-1.0); double bpn = (bp+n-1.0); tn *= ((apn/n)*mxi)*bpn; sum += tn; sum_err += 2.0 * GSL_DBL_EPSILON * fabs(tn); n += 1.0; } result->val = sum; result->err = sum_err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(nmax)+1.0) * fabs(sum); return GSL_SUCCESS; } else { return d9chu(a,b,x,result); }}/* Evaluate finite sum which appears below. */staticinthyperg_U_finite_sum(int N, double a, double b, double x, double xeps, gsl_sf_result * result){ int i; double sum_val; double sum_err; if(N <= 0) { double t_val = 1.0; double t_err = 0.0; gsl_sf_result poch; int stat_poch; sum_val = 1.0; sum_err = 0.0; for(i=1; i<= -N; i++) { const double xi1 = i - 1; const double mult = (a+xi1)*x/((b+xi1)*(xi1+1.0)); t_val *= mult; t_err += fabs(mult) * t_err + fabs(t_val) * 8.0 * 2.0 * GSL_DBL_EPSILON; sum_val += t_val; sum_err += t_err; } stat_poch = gsl_sf_poch_e(1.0+a-b, -a, &poch); result->val = sum_val * poch.val; result->err = fabs(sum_val) * poch.err + sum_err * fabs(poch.val); result->err += fabs(poch.val) * (fabs(N) + 2.0) * GSL_DBL_EPSILON * fabs(sum_val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->err *= 2.0; /* FIXME: fudge factor... why is the error estimate too small? */ return stat_poch; } else { const int M = N - 2; if(M < 0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { gsl_sf_result gbm1; gsl_sf_result gamr; int stat_gbm1; int stat_gamr; double t_val = 1.0; double t_err = 0.0; sum_val = 1.0; sum_err = 0.0; for(i=1; i<=M; i++) { const double mult = (a-b+i)*x/((1.0-b+i)*i); t_val *= mult; t_err += t_err * fabs(mult) + fabs(t_val) * 8.0 * 2.0 * GSL_DBL_EPSILON; sum_val += t_val; sum_err += t_err; } stat_gbm1 = gsl_sf_gamma_e(b-1.0, &gbm1); stat_gamr = gsl_sf_gammainv_e(a, &gamr); if(stat_gbm1 == GSL_SUCCESS) { gsl_sf_result powx1N; int stat_p = gsl_sf_pow_int_e(x, 1-N, &powx1N); double pe_val = powx1N.val * xeps; double pe_err = powx1N.err * fabs(xeps) + 2.0 * GSL_DBL_EPSILON * fabs(pe_val); double coeff_val = gbm1.val * gamr.val * pe_val; double coeff_err = gbm1.err * fabs(gamr.val * pe_val) + gamr.err * fabs(gbm1.val * pe_val) + fabs(gbm1.val * gamr.val) * pe_err + 2.0 * GSL_DBL_EPSILON * fabs(coeff_val); result->val = sum_val * coeff_val; result->err = fabs(sum_val) * coeff_err + sum_err * fabs(coeff_val); result->err += 2.0 * GSL_DBL_EPSILON * (M+2.0) * fabs(result->val); result->err *= 2.0; /* FIXME: fudge factor... why is the error estimate too small? */ return stat_p; } else { result->val = 0.0; result->err = 0.0; return stat_gbm1; } } }}/* Based on SLATEC DCHU() [W. Fullerton] * Assumes x > 0. * This is just a series summation method, and * it is not good for large a. * * I patched up the window for 1+a-b near zero. [GJ] */staticinthyperg_U_series(const double a, const double b, const double x, gsl_sf_result * result){ const double EPS = 2.0 * GSL_DBL_EPSILON; /* EPS = D1MACH(3) */ const double SQRT_EPS = M_SQRT2 * GSL_SQRT_DBL_EPSILON; if(fabs(1.0 + a - b) < SQRT_EPS) { /* Original Comment: ALGORITHM IS BAD WHEN 1+A-B IS NEAR ZERO FOR SMALL X */ /* We can however do the following: * U(a,b,x) = U(a,a+1,x) when 1+a-b=0 * and U(a,a+1,x) = x^(-a). */ double lnr = -a * log(x); int stat_e = gsl_sf_exp_e(lnr, result); result->err += 2.0 * SQRT_EPS * fabs(result->val); return stat_e; } else { double aintb = ( b < 0.0 ? ceil(b-0.5) : floor(b+0.5) ); double beps = b - aintb; int N = aintb; double lnx = log(x); double xeps = exp(-beps*lnx); /* Evaluate finite sum. */ gsl_sf_result sum; int stat_sum = hyperg_U_finite_sum(N, a, b, x, xeps, &sum); /* Evaluate infinite sum. */ int istrt = ( N < 1 ? 1-N : 0 ); double xi = istrt; gsl_sf_result gamr; gsl_sf_result powx; int stat_gamr = gsl_sf_gammainv_e(1.0+a-b, &gamr); int stat_powx = gsl_sf_pow_int_e(x, istrt, &powx); double sarg = beps*M_PI; double sfact = ( sarg != 0.0 ? sarg/sin(sarg) : 1.0 ); double factor_val = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * gamr.val * powx.val; double factor_err = fabs(gamr.val) * powx.err + fabs(powx.val) * gamr.err + 2.0 * GSL_DBL_EPSILON * fabs(factor_val); gsl_sf_result pochai; gsl_sf_result gamri1; gsl_sf_result gamrni; int stat_pochai = gsl_sf_poch_e(a, xi, &pochai); int stat_gamri1 = gsl_sf_gammainv_e(xi + 1.0, &gamri1); int stat_gamrni = gsl_sf_gammainv_e(aintb + xi, &gamrni); int stat_gam123 = GSL_ERROR_SELECT_3(stat_gamr, stat_gamri1, stat_gamrni); int stat_gamall = GSL_ERROR_SELECT_4(stat_sum, stat_gam123, stat_pochai, stat_powx); gsl_sf_result pochaxibeps; gsl_sf_result gamrxi1beps; int stat_pochaxibeps = gsl_sf_poch_e(a, xi-beps, &pochaxibeps); int stat_gamrxi1beps = gsl_sf_gammainv_e(xi + 1.0 - beps, &gamrxi1beps); int stat_all = GSL_ERROR_SELECT_3(stat_gamall, stat_pochaxibeps, stat_gamrxi1beps); double b0_val = factor_val * pochaxibeps.val * gamrni.val * gamrxi1beps.val; double b0_err = fabs(factor_val * pochaxibeps.val * gamrni.val) * gamrxi1beps.err + fabs(factor_val * pochaxibeps.val * gamrxi1beps.val) * gamrni.err + fabs(factor_val * gamrni.val * gamrxi1beps.val) * pochaxibeps.err + fabs(pochaxibeps.val * gamrni.val * gamrxi1beps.val) * factor_err + 2.0 * GSL_DBL_EPSILON * fabs(b0_val); if(fabs(xeps-1.0) < 0.5) { /* C X**(-BEPS) IS CLOSE TO 1.0D0, SO WE MUST BE C CAREFUL IN EVALUATING THE DIFFERENCES. */ int i; gsl_sf_result pch1ai; gsl_sf_result pch1i; gsl_sf_result poch1bxibeps; int stat_pch1ai = gsl_sf_pochrel_e(a + xi, -beps, &pch1ai); int stat_pch1i = gsl_sf_pochrel_e(xi + 1.0 - beps, beps, &pch1i); int stat_poch1bxibeps = gsl_sf_pochrel_e(b+xi, -beps, &poch1bxibeps); double c0_t1_val = beps*pch1ai.val*pch1i.val; double c0_t1_err = fabs(beps) * fabs(pch1ai.val) * pch1i.err + fabs(beps) * fabs(pch1i.val) * pch1ai.err + 2.0 * GSL_DBL_EPSILON * fabs(c0_t1_val); double c0_t2_val = -poch1bxibeps.val + pch1ai.val - pch1i.val + c0_t1_val; double c0_t2_err = poch1bxibeps.err + pch1ai.err + pch1i.err + c0_t1_err + 2.0 * GSL_DBL_EPSILON * fabs(c0_t2_val); double c0_val = factor_val * pochai.val * gamrni.val * gamri1.val * c0_t2_val; double c0_err = fabs(factor_val * pochai.val * gamrni.val * gamri1.val) * c0_t2_err + fabs(factor_val * pochai.val * gamrni.val * c0_t2_val) * gamri1.err + fabs(factor_val * pochai.val * gamri1.val * c0_t2_val) * gamrni.err + fabs(factor_val * gamrni.val * gamri1.val * c0_t2_val) * pochai.err + fabs(pochai.val * gamrni.val * gamri1.val * c0_t2_val) * factor_err + 2.0 * GSL_DBL_EPSILON * fabs(c0_val); /* C XEPS1 = (1.0 - X**(-BEPS))/BEPS = (X**(-BEPS) - 1.0)/(-BEPS) */ gsl_sf_result dexprl; int stat_dexprl = gsl_sf_exprel_e(-beps*lnx, &dexprl); double xeps1_val = lnx * dexprl.val; double xeps1_err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(beps*lnx)) * fabs(dexprl.val) + fabs(lnx) * dexprl.err + 2.0 * GSL_DBL_EPSILON * fabs(xeps1_val); double dchu_val = sum.val + c0_val + xeps1_val*b0_val; double dchu_err = sum.err + c0_err + fabs(xeps1_val)*b0_err + xeps1_err * fabs(b0_val) + fabs(b0_val*lnx)*dexprl.err + 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(c0_val) + fabs(xeps1_val*b0_val)); double xn = N; double t_val; double t_err; stat_all = GSL_ERROR_SELECT_5(stat_all, stat_dexprl, stat_poch1bxibeps, stat_pch1i, stat_pch1ai); for(i=1; i<2000; i++) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -