📄 gamma.c
字号:
psi_3.val = 0.0; psi_4.val = 0.0; psi_5.val = 0.0; psi_6.val = 0.0; gsl_sf_lnfact_e(N, &c0); gsl_sf_psi_int_e(N+1, &psi_0); gsl_sf_psi_1_int_e(N+1, &psi_1); if(aeps > 0.00001) gsl_sf_psi_n_e(2, N+1.0, &psi_2); if(aeps > 0.0002) gsl_sf_psi_n_e(3, N+1.0, &psi_3); if(aeps > 0.001) gsl_sf_psi_n_e(4, N+1.0, &psi_4); if(aeps > 0.005) gsl_sf_psi_n_e(5, N+1.0, &psi_5); if(aeps > 0.01) gsl_sf_psi_n_e(6, N+1.0, &psi_6); c1 = psi_0.val; c2 = psi_1.val/2.0; c3 = psi_2.val/6.0; c4 = psi_3.val/24.0; c5 = psi_4.val/120.0; c6 = psi_5.val/720.0; c7 = psi_6.val/5040.0; lng_ser = c0.val-eps*(c1-eps*(c2-eps*(c3-eps*(c4-eps*(c5-eps*(c6-eps*c7)))))); /* calculate * g = ln(|eps gamma(-N+eps)|) * = -ln(gamma(1+N-eps)) + ln(|eps Pi/sin(Pi(N+1+eps))|) */ g = -lng_ser - log(sin_ser); lng->val = g - log(fabs(eps)); lng->err = c0.err + 2.0 * GSL_DBL_EPSILON * (fabs(g) + fabs(lng->val)); *sgn = ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * ( eps > 0.0 ? 1.0 : -1.0 ); return GSL_SUCCESS; }}/* This gets bad near the negative half axis. However, this * region can be avoided by use of the reflection formula, as usual. * Only the first two terms of the series are kept. */#if 0staticintlngamma_complex_stirling(const double zr, const double zi, double * lg_r, double * arg){ double re_zinv, im_zinv; double re_zinv2, im_zinv2; double re_zinv3, im_zinv3; double re_zhlnz, im_zhlnz; double r, lnr, theta; gsl_sf_complex_log_e(zr, zi, &lnr, &theta); /* z = r e^{i theta} */ r = exp(lnr); re_zinv = (zr/r)/r; im_zinv = -(zi/r)/r; re_zinv2 = re_zinv*re_zinv - im_zinv*im_zinv; re_zinv2 = 2.0*re_zinv*im_zinv; re_zinv3 = re_zinv2*re_zinv - im_zinv2*im_zinv; re_zinv3 = re_zinv2*im_zinv + im_zinv2*re_zinv; re_zhlnz = (zr - 0.5)*lnr - zi*theta; im_zhlnz = zi*lnr + zr*theta; *lg_r = re_zhlnz - zr + 0.5*(M_LN2+M_LNPI) + re_zinv/12.0 - re_zinv3/360.0; *arg = im_zhlnz - zi + 1.0/12.0*im_zinv - im_zinv3/360.0; return GSL_SUCCESS;}#endif /* 0 */inlinestaticintlngamma_1_pade(const double eps, gsl_sf_result * result){ /* Use (2,2) Pade for Log[Gamma[1+eps]]/eps * plus a correction series. */ const double n1 = -1.0017419282349508699871138440; const double n2 = 1.7364839209922879823280541733; const double d1 = 1.2433006018858751556055436011; const double d2 = 5.0456274100274010152489597514; const double num = (eps + n1) * (eps + n2); const double den = (eps + d1) * (eps + d2); const double pade = 2.0816265188662692474880210318 * num / den; const double c0 = 0.004785324257581753; const double c1 = -0.01192457083645441; const double c2 = 0.01931961413960498; const double c3 = -0.02594027398725020; const double c4 = 0.03141928755021455; const double eps5 = eps*eps*eps*eps*eps; const double corr = eps5 * (c0 + eps*(c1 + eps*(c2 + eps*(c3 + c4*eps)))); result->val = eps * (pade + corr); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS;}inlinestaticintlngamma_2_pade(const double eps, gsl_sf_result * result){ /* Use (2,2) Pade for Log[Gamma[2+eps]]/eps * plus a correction series. */ const double n1 = 1.000895834786669227164446568; const double n2 = 4.209376735287755081642901277; const double d1 = 2.618851904903217274682578255; const double d2 = 10.85766559900983515322922936; const double num = (eps + n1) * (eps + n2); const double den = (eps + d1) * (eps + d2); const double pade = 2.85337998765781918463568869 * num/den; const double c0 = 0.0001139406357036744; const double c1 = -0.0001365435269792533; const double c2 = 0.0001067287169183665; const double c3 = -0.0000693271800931282; const double c4 = 0.0000407220927867950; const double eps5 = eps*eps*eps*eps*eps; const double corr = eps5 * (c0 + eps*(c1 + eps*(c2 + eps*(c3 + c4*eps)))); result->val = eps * (pade + corr); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS;}/* series for gammastar(x) * double-precision for x > 10.0 */staticintgammastar_ser(const double x, gsl_sf_result * result){ /* Use the Stirling series for the correction to Log(Gamma(x)), * which is better behaved and easier to compute than the * regular Stirling series for Gamma(x). */ const double y = 1.0/(x*x); const double c0 = 1.0/12.0; const double c1 = -1.0/360.0; const double c2 = 1.0/1260.0; const double c3 = -1.0/1680.0; const double c4 = 1.0/1188.0; const double c5 = -691.0/360360.0; const double c6 = 1.0/156.0; const double c7 = -3617.0/122400.0; const double ser = c0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*c7)))))); result->val = exp(ser/x); result->err = 2.0 * GSL_DBL_EPSILON * result->val * GSL_MAX_DBL(1.0, ser/x); return GSL_SUCCESS;}/* Chebyshev expansion for log(gamma(x)/gamma(8)) * 5 < x < 10 * -1 < t < 1 */static double gamma_5_10_data[24] = { -1.5285594096661578881275075214, 4.8259152300595906319768555035, 0.2277712320977614992970601978, -0.0138867665685617873604917300, 0.0012704876495201082588139723, -0.0001393841240254993658962470, 0.0000169709242992322702260663, -2.2108528820210580075775889168e-06, 3.0196602854202309805163918716e-07, -4.2705675000079118380587357358e-08, 6.2026423818051402794663551945e-09, -9.1993973208880910416311405656e-10, 1.3875551258028145778301211638e-10, -2.1218861491906788718519522978e-11, 3.2821736040381439555133562600e-12, -5.1260001009953791220611135264e-13, 8.0713532554874636696982146610e-14, -1.2798522376569209083811628061e-14, 2.0417711600852502310258808643e-15, -3.2745239502992355776882614137e-16, 5.2759418422036579482120897453e-17, -8.5354147151695233960425725513e-18, 1.3858639703888078291599886143e-18, -2.2574398807738626571560124396e-19};static const cheb_series gamma_5_10_cs = { gamma_5_10_data, 23, -1, 1, 11};/* gamma(x) for x >= 1/2 * assumes x >= 1/2 */staticintgamma_xgthalf(const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x == 0.5) { result->val = 1.77245385090551602729817; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(fabs(x - 1.0) < 0.01) { /* Use series for Gamma[1+eps] - 1/(1+eps). */ const double eps = x - 1.0; const double c1 = 0.4227843350984671394; const double c2 = -0.01094400467202744461; const double c3 = 0.09252092391911371098; const double c4 = -0.018271913165599812664; const double c5 = 0.018004931096854797895; const double c6 = -0.006850885378723806846; const double c7 = 0.003998239557568466030; result->val = 1.0/x + eps*(c1+eps*(c2+eps*(c3+eps*(c4+eps*(c5+eps*(c6+eps*c7)))))); result->err = GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(fabs(x - 2.0) < 0.01) { /* Use series for Gamma[1 + eps]. */ const double eps = x - 2.0; const double c1 = 0.4227843350984671394; const double c2 = 0.4118403304264396948; const double c3 = 0.08157691924708626638; const double c4 = 0.07424901075351389832; const double c5 = -0.00026698206874501476832; const double c6 = 0.011154045718130991049; const double c7 = -0.002852645821155340816; const double c8 = 0.0021039333406973880085; result->val = 1.0 + eps*(c1+eps*(c2+eps*(c3+eps*(c4+eps*(c5+eps*(c6+eps*(c7+eps*c8))))))); result->err = GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < 5.0) { /* Exponentiating the logarithm is fine, as * long as the exponential is not so large * that it greatly amplifies the error. */ gsl_sf_result lg; lngamma_lanczos(x, &lg); result->val = exp(lg.val); result->err = result->val * (lg.err + 2.0 * GSL_DBL_EPSILON); return GSL_SUCCESS; } else if(x < 10.0) { /* This is a sticky area. The logarithm * is too large and the gammastar series * is not good. */ const double gamma_8 = 5040.0; const double t = (2.0*x - 15.0)/5.0; gsl_sf_result c; cheb_eval_e(&gamma_5_10_cs, t, &c); result->val = exp(c.val) * gamma_8; result->err = result->val * c.err; result->err += 2.0 * GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x < GSL_SF_GAMMA_XMAX) { /* We do not want to exponentiate the logarithm * if x is large because of the inevitable * inflation of the error. So we carefully * use pow() and exp() with exact quantities. */ double p = pow(x, 0.5*x); double e = exp(-x); double q = (p * e) * p; double pre = M_SQRT2 * M_SQRTPI * q/sqrt(x); gsl_sf_result gstar; int stat_gs = gammastar_ser(x, &gstar); result->val = pre * gstar.val; result->err = (x + 2.5) * GSL_DBL_EPSILON * result->val; return stat_gs; } else { OVERFLOW_ERROR(result); }}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_lngamma_e(double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(fabs(x - 1.0) < 0.01) { /* Note that we must amplify the errors * from the Pade evaluations because of * the way we must pass the argument, i.e. * writing (1-x) is a loss of precision * when x is near 1. */ int stat = lngamma_1_pade(x - 1.0, result); result->err *= 1.0/(GSL_DBL_EPSILON + fabs(x - 1.0)); return stat; } else if(fabs(x - 2.0) < 0.01) { int stat = lngamma_2_pade(x - 2.0, result); result->err *= 1.0/(GSL_DBL_EPSILON + fabs(x - 2.0)); return stat; } else if(x >= 0.5) { return lngamma_lanczos(x, result); } else if(x == 0.0) { DOMAIN_ERROR(result); } else if(fabs(x) < 0.02) { double sgn; return lngamma_sgn_0(x, result, &sgn); } else if(x > -0.5/(GSL_DBL_EPSILON*M_PI)) { /* Try to extract a fractional * part from x. */ double z = 1.0 - x; double s = sin(M_PI*z); double as = fabs(s); if(s == 0.0) { DOMAIN_ERROR(result); } else if(as < M_PI*0.015) { /* x is near a negative integer, -N */ if(x < INT_MIN + 2.0) { result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EROUND); } else { int N = -(int)(x - 0.5); double eps = x + N; double sgn; return lngamma_sgn_sing(N, eps, result, &sgn); } } else { gsl_sf_result lg_z; lngamma_lanczos(z, &lg_z); result->val = M_LNPI - (log(as) + lg_z.val); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + lg_z.err; return GSL_SUCCESS; } } else { /* |x| was too large to extract any fractional part */ result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EROUND); }}int gsl_sf_lngamma_sgn_e(double x, gsl_sf_result * result_lg, double * sgn){ if(fabs(x - 1.0) < 0.01) { *sgn = 1.0; return lngamma_1_pade(x-1.0, result_lg); } else if(fabs(x - 2.0) < 0.01) { *sgn = 1.0; return lngamma_2_pade(x-2.0, result_lg); } else if(x >= 0.5) { *sgn = 1.0; return lngamma_lanczos(x, result_lg); } else if(x == 0.0) { *sgn = 0.0; DOMAIN_ERROR(result_lg); } else if(fabs(x) < 0.02) { return lngamma_sgn_0(x, result_lg, sgn); } else if(x > -0.5/(GSL_DBL_EPSILON*M_PI)) { double z = 1.0 - x; double s = sin(M_PI*x); double as = fabs(s); if(s == 0.0) { *sgn = 0.0; DOMAIN_ERROR(result_lg); } else if(as < M_PI*0.015) { /* x is near a negative integer, -N */ if(x < INT_MIN + 2.0) { result_lg->val = 0.0; result_lg->err = 0.0; *sgn = 0.0; GSL_ERROR ("error", GSL_EROUND); } else { int N = -(int)(x - 0.5); double eps = x + N; return lngamma_sgn_sing(N, eps, result_lg, sgn); } } else { gsl_sf_result lg_z; lngamma_lanczos(z, &lg_z); *sgn = (s > 0.0 ? 1.0 : -1.0); result_lg->val = M_LNPI - (log(as) + lg_z.val); result_lg->err = 2.0 * GSL_DBL_EPSILON * fabs(result_lg->val) + lg_z.err; return GSL_SUCCESS; } } else { /* |x| was too large to extract any fractional part */ result_lg->val = 0.0; result_lg->err = 0.0; *sgn = 0.0; GSL_ERROR ("error", GSL_EROUND); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -