📄 bessel.c
字号:
const int stat_Y0 = gsl_sf_bessel_Ynu_asympx_e(mu, x, Ymu); const int stat_Y1 = gsl_sf_bessel_Ynu_asympx_e(mu+1.0, x, Ymup1); stat_J = GSL_ERROR_SELECT_2(stat_J0, stat_J1); stat_Y = GSL_ERROR_SELECT_2(stat_Y0, stat_Y1); return GSL_ERROR_SELECT_2(stat_J, stat_Y); } }}intgsl_sf_bessel_J_CF1(const double nu, const double x, double * ratio, double * sgn){ const double RECUR_BIG = GSL_SQRT_DBL_MAX; const int maxiter = 10000; int n = 1; double Anm2 = 1.0; double Bnm2 = 0.0; double Anm1 = 0.0; double Bnm1 = 1.0; double a1 = x/(2.0*(nu+1.0)); double An = Anm1 + a1*Anm2; double Bn = Bnm1 + a1*Bnm2; double an; double fn = An/Bn; double dn = a1; double s = 1.0; while(n < maxiter) { double old_fn; double del; n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; an = -x*x/(4.0*(nu+n-1.0)*(nu+n)); An = Anm1 + an*Anm2; Bn = Bnm1 + an*Bnm2; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; dn = 1.0 / (2.0*(nu+n)/x - dn); if(dn < 0.0) s = -s; if(fabs(del - 1.0) < 2.0*GSL_DBL_EPSILON) break; } *ratio = fn; *sgn = s; if(n >= maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS;}/* Evaluate the continued fraction CF1 for J_{nu+1}/J_nu * using Gautschi (Euler) equivalent series. * This exhibits an annoying problem because the * a_k are not positive definite (in fact they are all negative). * There are cases when rho_k blows up. Example: nu=1,x=4. */#if 0intgsl_sf_bessel_J_CF1_ser(const double nu, const double x, double * ratio, double * sgn){ const int maxk = 20000; double tk = 1.0; double sum = 1.0; double rhok = 0.0; double dk = 0.0; double s = 1.0; int k; for(k=1; k<maxk; k++) { double ak = -0.25 * (x/(nu+k)) * x/(nu+k+1.0); rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0 + rhok)); tk *= rhok; sum += tk; dk = 1.0 / (2.0/x - (nu+k-1.0)/(nu+k) * dk); if(dk < 0.0) s = -s; if(fabs(tk/sum) < GSL_DBL_EPSILON) break; } *ratio = x/(2.0*(nu+1.0)) * sum; *sgn = s; if(k == maxk) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS;}#endif/* Evaluate the continued fraction CF1 for I_{nu+1}/I_nu * using Gautschi (Euler) equivalent series. */intgsl_sf_bessel_I_CF1_ser(const double nu, const double x, double * ratio){ const int maxk = 20000; double tk = 1.0; double sum = 1.0; double rhok = 0.0; int k; for(k=1; k<maxk; k++) { double ak = 0.25 * (x/(nu+k)) * x/(nu+k+1.0); rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0 + rhok)); tk *= rhok; sum += tk; if(fabs(tk/sum) < GSL_DBL_EPSILON) break; } *ratio = x/(2.0*(nu+1.0)) * sum; if(k == maxk) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS;}intgsl_sf_bessel_JY_steed_CF2(const double nu, const double x, double * P, double * Q){ const int max_iter = 10000; const double SMALL = 1.0e-100; int i = 1; double x_inv = 1.0/x; double a = 0.25 - nu*nu; double p = -0.5*x_inv; double q = 1.0; double br = 2.0*x; double bi = 2.0; double fact = a*x_inv/(p*p + q*q); double cr = br + q*fact; double ci = bi + p*fact; double den = br*br + bi*bi; double dr = br/den; double di = -bi/den; double dlr = cr*dr - ci*di; double dli = cr*di + ci*dr; double temp = p*dlr - q*dli; q = p*dli + q*dlr; p = temp; for (i=2; i<=max_iter; i++) { a += 2*(i-1); bi += 2.0; dr = a*dr + br; di = a*di + bi; if(fabs(dr)+fabs(di) < SMALL) dr = SMALL; fact = a/(cr*cr+ci*ci); cr = br + cr*fact; ci = bi - ci*fact; if(fabs(cr)+fabs(ci) < SMALL) cr = SMALL; den = dr*dr + di*di; dr /= den; di /= -den; dlr = cr*dr - ci*di; dli = cr*di + ci*dr; temp = p*dlr - q*dli; q = p*dli + q*dlr; p = temp; if(fabs(dlr-1.0)+fabs(dli) < GSL_DBL_EPSILON) break; } *P = p; *Q = q; if(i == max_iter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS;}/* Evaluate continued fraction CF2, using Thompson-Barnett-Temme method, * to obtain values of exp(x)*K_nu and exp(x)*K_{nu+1}. * * This is unstable for small x; x > 2 is a good cutoff. * Also requires |nu| < 1/2. */intgsl_sf_bessel_K_scaled_steed_temme_CF2(const double nu, const double x, double * K_nu, double * K_nup1, double * Kp_nu){ const int maxiter = 10000; int i = 1; double bi = 2.0*(1.0 + x); double di = 1.0/bi; double delhi = di; double hi = di; double qi = 0.0; double qip1 = 1.0; double ai = -(0.25 - nu*nu); double a1 = ai; double ci = -ai; double Qi = -ai; double s = 1.0 + Qi*delhi; for(i=2; i<=maxiter; i++) { double dels; double tmp; ai -= 2.0*(i-1); ci = -ai*ci/i; tmp = (qi - bi*qip1)/ai; qi = qip1; qip1 = tmp; Qi += ci*qip1; bi += 2.0; di = 1.0/(bi + ai*di); delhi = (bi*di - 1.0) * delhi; hi += delhi; dels = Qi*delhi; s += dels; if(fabs(dels/s) < GSL_DBL_EPSILON) break; } hi *= -a1; *K_nu = sqrt(M_PI/(2.0*x)) / s; *K_nup1 = *K_nu * (nu + x + 0.5 - hi)/x; *Kp_nu = - *K_nup1 + nu/x * *K_nu; if(i == maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS;}int gsl_sf_bessel_cos_pi4_e(double y, double eps, gsl_sf_result * result){ const double sy = sin(y); const double cy = cos(y); const double s = sy + cy; const double d = sy - cy; const double abs_sum = fabs(cy) + fabs(sy); double seps; double ceps; if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) { const double e2 = eps*eps; seps = eps * (1.0 - e2/6.0 * (1.0 - e2/20.0)); ceps = 1.0 - e2/2.0 * (1.0 - e2/12.0); } else { seps = sin(eps); ceps = cos(eps); } result->val = (ceps * s - seps * d)/ M_SQRT2; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(ceps) + fabs(seps)) * abs_sum / M_SQRT2; /* Try to account for error in evaluation of sin(y), cos(y). * This is a little sticky because we don't really know * how the library routines are doing their argument reduction. * However, we will make a reasonable guess. * FIXME ? */ if(y > 1.0/GSL_DBL_EPSILON) { result->err *= 0.5 * y; } else if(y > 1.0/GSL_SQRT_DBL_EPSILON) { result->err *= 256.0 * y * GSL_SQRT_DBL_EPSILON; } return GSL_SUCCESS;}int gsl_sf_bessel_sin_pi4_e(double y, double eps, gsl_sf_result * result){ const double sy = sin(y); const double cy = cos(y); const double s = sy + cy; const double d = sy - cy; const double abs_sum = fabs(cy) + fabs(sy); double seps; double ceps; if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) { const double e2 = eps*eps; seps = eps * (1.0 - e2/6.0 * (1.0 - e2/20.0)); ceps = 1.0 - e2/2.0 * (1.0 - e2/12.0); } else { seps = sin(eps); ceps = cos(eps); } result->val = (ceps * d + seps * s)/ M_SQRT2; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(ceps) + fabs(seps)) * abs_sum / M_SQRT2; /* Try to account for error in evaluation of sin(y), cos(y). * See above. * FIXME ? */ if(y > 1.0/GSL_DBL_EPSILON) { result->err *= 0.5 * y; } else if(y > 1.0/GSL_SQRT_DBL_EPSILON) { result->err *= 256.0 * y * GSL_SQRT_DBL_EPSILON; } return GSL_SUCCESS;}/************************************************************************ * * Asymptotic approximations 8.11.5, 8.12.5, and 8.42.7 from G.N.Watson, A Treatise on the Theory of Bessel Functions, 2nd Edition (Cambridge University Press, 1944). Higher terms in expansion for x near l given by Airey in Phil. Mag. 31, 520 (1916). This approximation is accurate to near 0.1% at the boundaries between the asymptotic regions; well away from the boundaries the accuracy is better than 10^{-5}. * * ************************************************************************/#if 0double besselJ_meissel(double nu, double x){ double beta = pow(nu, 0.325); double result; /* Fitted matching points. */ double llimit = 1.1 * beta; double ulimit = 1.3 * beta; double nu2 = nu * nu; if (nu < 5. && x < 1.) { /* Small argument and order. Use a Taylor expansion. */ int k; double xo2 = 0.5 * x; double gamfactor = pow(nu,nu) * exp(-nu) * sqrt(nu * 2. * M_PI) * (1. + 1./(12.*nu) + 1./(288.*nu*nu)); double prefactor = pow(xo2, nu) / gamfactor; double C[5]; C[0] = 1.; C[1] = -C[0] / (nu+1.); C[2] = -C[1] / (2.*(nu+2.)); C[3] = -C[2] / (3.*(nu+3.)); C[4] = -C[3] / (4.*(nu+4.)); result = 0.; for(k=0; k<5; k++) result += C[k] * pow(xo2, 2.*k); result *= prefactor; } else if(x < nu - llimit) { /* Small x region: x << l. */ double z = x / nu; double z2 = z*z; double rtomz2 = sqrt(1.-z2); double omz2_2 = (1.-z2)*(1.-z2); /* Calculate Meissel exponent. */ double term1 = 1./(24.*nu) * ((2.+3.*z2)/((1.-z2)*rtomz2) -2.); double term2 = - z2*(4. + z2)/(16.*nu2*(1.-z2)*omz2_2); double V_nu = term1 + term2; /* Calculate the harmless prefactor. */ double sterlingsum = 1. + 1./(12.*nu) + 1./(288*nu2); double harmless = 1. / (sqrt(rtomz2*2.*M_PI*nu) * sterlingsum); /* Calculate the logarithm of the nu dependent prefactor. */ double ln_nupre = rtomz2 + log(z) - log(1. + rtomz2); result = harmless * exp(nu*ln_nupre - V_nu); } else if(x < nu + ulimit) { /* Intermediate region 1: x near nu. */ double eps = 1.-nu/x; double eps_x = eps * x; double eps_x_2 = eps_x * eps_x; double xo6 = x/6.; double B[6]; static double gam[6] = {2.67894, 1.35412, 1., 0.89298, 0.902745, 1.}; static double sf[6] = {0.866025, 0.866025, 0., -0.866025, -0.866025, 0.}; /* Some terms are identically zero, because sf[] can be zero. * Some terms do not appear in the result. */ B[0] = 1.; B[1] = eps_x; /* B[2] = 0.5 * eps_x_2 - 1./20.; */ B[3] = eps_x * (eps_x_2/6. - 1./15.); B[4] = eps_x_2 * (eps_x_2 - 1.)/24. + 1./280.; /* B[5] = eps_x * (eps_x_2*(0.5*eps_x_2 - 1.)/60. + 43./8400.); */ result = B[0] * gam[0] * sf[0] / pow(xo6, 1./3.); result += B[1] * gam[1] * sf[1] / pow(xo6, 2./3.); result += B[3] * gam[3] * sf[3] / pow(xo6, 4./3.); result += B[4] * gam[4] * sf[4] / pow(xo6, 5./3.); result /= (3.*M_PI); } else { /* Region of very large argument. Use expansion * for x>>l, and we need not be very exacting. */ double secb = x/nu; double sec2b= secb*secb; double cotb = 1./sqrt(sec2b-1.); /* cotb=cot(beta) */ double beta = acos(nu/x); double trigarg = nu/cotb - nu*beta - 0.25 * M_PI; double cot3b = cotb * cotb * cotb; double cot6b = cot3b * cot3b; double sum1, sum2, expterm, prefactor, trigcos; sum1 = 2.0 + 3.0 * sec2b; trigarg -= sum1 * cot3b / (24.0 * nu); trigcos = cos(trigarg); sum2 = 4.0 + sec2b; expterm = sum2 * sec2b * cot6b / (16.0 * nu2); expterm = exp(-expterm); prefactor = sqrt(2. * cotb / (nu * M_PI)); result = prefactor * expterm * trigcos; } return result;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -