📄 bessel.c
字号:
/* specfunc/bessel.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman *//* Miscellaneous support functions for Bessel function evaluations. */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_airy.h"#include "gsl_sf_elementary.h"#include "gsl_sf_exp.h"#include "gsl_sf_gamma.h"#include "gsl_sf_trig.h"#include "error.h"#include "bessel_amp_phase.h"#include "bessel_temme.h"#include "bessel.h"#define CubeRoot2_ 1.25992104989487316476721060728/* Debye functions [Abramowitz+Stegun, 9.3.9-10] */inline static double debye_u1(const double * tpow){ return (3.0*tpow[1] - 5.0*tpow[3])/24.0;}inline static double debye_u2(const double * tpow){ return (81.0*tpow[2] - 462.0*tpow[4] + 385.0*tpow[6])/1152.0;}inlinestatic double debye_u3(const double * tpow){ return (30375.0*tpow[3] - 369603.0*tpow[5] + 765765.0*tpow[7] - 425425.0*tpow[9])/414720.0;}inlinestatic double debye_u4(const double * tpow){ return (4465125.0*tpow[4] - 94121676.0*tpow[6] + 349922430.0*tpow[8] - 446185740.0*tpow[10] + 185910725.0*tpow[12])/39813120.0;}inlinestatic double debye_u5(const double * tpow){ return (1519035525.0*tpow[5] - 49286948607.0*tpow[7] + 284499769554.0*tpow[9] - 614135872350.0*tpow[11] + 566098157625.0*tpow[13] - 188699385875.0*tpow[15])/6688604160.0;}#if 0inlinestatic double debye_u6(const double * tpow){ return (2757049477875.0*tpow[6] - 127577298354750.0*tpow[8] + 1050760774457901.0*tpow[10] - 3369032068261860.0*tpow[12] + 5104696716244125.0*tpow[14] - 3685299006138750.0*tpow[16] + 1023694168371875.0*tpow[18])/4815794995200.0;}#endif/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/intgsl_sf_bessel_IJ_taylor_e(const double nu, const double x, const int sign, const int kmax, const double threshold, gsl_sf_result * result ){ /* CHECK_POINTER(result) */ if(nu < 0.0 || x < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { if(nu == 0.0) { result->val = 1.0; result->err = 0.0; } else { result->val = 0.0; result->err = 0.0; } return GSL_SUCCESS; } else { gsl_sf_result prefactor; /* (x/2)^nu / Gamma(nu+1) */ gsl_sf_result sum; int stat_pre; int stat_sum; int stat_mul; if(nu == 0.0) { prefactor.val = 1.0; prefactor.err = 0.0; stat_pre = GSL_SUCCESS; } else if(nu < INT_MAX-1) { /* Separate the integer part and use * y^nu / Gamma(nu+1) = y^N /N! y^f / (N+1)_f, * to control the error. */ const int N = (int)floor(nu + 0.5); const double f = nu - N; gsl_sf_result poch_factor; gsl_sf_result tc_factor; const int stat_poch = gsl_sf_poch_e(N+1.0, f, &poch_factor); const int stat_tc = gsl_sf_taylorcoeff_e(N, 0.5*x, &tc_factor); const double p = pow(0.5*x,f); prefactor.val = tc_factor.val * p / poch_factor.val; prefactor.err = tc_factor.err * p / poch_factor.val; prefactor.err += fabs(prefactor.val) / poch_factor.val * poch_factor.err; prefactor.err += 2.0 * GSL_DBL_EPSILON * fabs(prefactor.val); stat_pre = GSL_ERROR_SELECT_2(stat_tc, stat_poch); } else { gsl_sf_result lg; const int stat_lg = gsl_sf_lngamma_e(nu+1.0, &lg); const double term1 = nu*log(0.5*x); const double term2 = lg.val; const double ln_pre = term1 - term2; const double ln_pre_err = GSL_DBL_EPSILON * (fabs(term1)+fabs(term2)) + lg.err; const int stat_ex = gsl_sf_exp_err_e(ln_pre, ln_pre_err, &prefactor); stat_pre = GSL_ERROR_SELECT_2(stat_ex, stat_lg); } /* Evaluate the sum. * [Abramowitz+Stegun, 9.1.10] * [Abramowitz+Stegun, 9.6.7] */ { const double y = sign * 0.25 * x*x; double sumk = 1.0; double term = 1.0; int k; for(k=1; k<=kmax; k++) { term *= y/((nu+k)*k); sumk += term; if(fabs(term/sumk) < threshold) break; } sum.val = sumk; sum.err = threshold * fabs(sumk); stat_sum = ( k >= kmax ? GSL_EMAXITER : GSL_SUCCESS ); } stat_mul = gsl_sf_multiply_err_e(prefactor.val, prefactor.err, sum.val, sum.err, result); return GSL_ERROR_SELECT_3(stat_mul, stat_pre, stat_sum); }}/* x >> nu*nu+1 * error ~ O( ((nu*nu+1)/x)^3 ) * * empirical error analysis: * choose GSL_ROOT3_MACH_EPS * x > (nu*nu + 1) * * This is not especially useful. When the argument gets * large enough for this to apply, the cos() and sin() * start loosing digits. However, this seems inevitable * for this particular method. */intgsl_sf_bessel_Jnu_asympx_e(const double nu, const double x, gsl_sf_result * result){ double mu = 4.0*nu*nu; double mum1 = mu-1.0; double mum9 = mu-9.0; double chi = x - (0.5*nu + 0.25)*M_PI; double P = 1.0 - mum1*mum9/(128.0*x*x); double Q = mum1/(8.0*x); double pre = sqrt(2.0/(M_PI*x)); double c = cos(chi); double s = sin(chi); double r = mu/x; result->val = pre * (c*P - s*Q); result->err = pre * GSL_DBL_EPSILON * (fabs(c*P) + fabs(s*Q)); result->err += pre * fabs(0.1*r*r*r); return GSL_SUCCESS;}/* x >> nu*nu+1 */intgsl_sf_bessel_Ynu_asympx_e(const double nu, const double x, gsl_sf_result * result){ double ampl; double theta; double alpha = x; double beta = -0.5*nu*M_PI; int stat_a = gsl_sf_bessel_asymp_Mnu_e(nu, x, &l); int stat_t = gsl_sf_bessel_asymp_thetanu_corr_e(nu, x, &theta); double sin_alpha = sin(alpha); double cos_alpha = cos(alpha); double sin_chi = sin(beta + theta); double cos_chi = cos(beta + theta); double sin_term = sin_alpha * cos_chi + sin_chi * cos_alpha; double sin_term_mag = fabs(sin_alpha * cos_chi) + fabs(sin_chi * cos_alpha); result->val = ampl * sin_term; result->err = fabs(ampl) * GSL_DBL_EPSILON * sin_term_mag; result->err += fabs(result->val) * 2.0 * GSL_DBL_EPSILON; if(fabs(alpha) > 1.0/GSL_DBL_EPSILON) { result->err *= 0.5 * fabs(alpha); } else if(fabs(alpha) > 1.0/GSL_SQRT_DBL_EPSILON) { result->err *= 256.0 * fabs(alpha) * GSL_SQRT_DBL_EPSILON; } return GSL_ERROR_SELECT_2(stat_t, stat_a);}/* x >> nu*nu+1 */intgsl_sf_bessel_Inu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result){ double mu = 4.0*nu*nu; double mum1 = mu-1.0; double mum9 = mu-9.0; double pre = 1.0/sqrt(2.0*M_PI*x); double r = mu/x; result->val = pre * (1.0 - mum1/(8.0*x) + mum1*mum9/(128.0*x*x)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * fabs(0.1*r*r*r); return GSL_SUCCESS;}/* x >> nu*nu+1 */intgsl_sf_bessel_Knu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result){ double mu = 4.0*nu*nu; double mum1 = mu-1.0; double mum9 = mu-9.0; double pre = sqrt(M_PI/(2.0*x)); double r = nu/x; result->val = pre * (1.0 + mum1/(8.0*x) + mum1*mum9/(128.0*x*x)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * fabs(0.1*r*r*r); return GSL_SUCCESS;}/* nu -> Inf; uniform in x > 0 [Abramowitz+Stegun, 9.7.7] * * error: * The error has the form u_N(t)/nu^N where 0 <= t <= 1. * It is not hard to show that |u_N(t)| is small for such t. * We have N=6 here, and |u_6(t)| < 0.025, so the error is clearly * bounded by 0.025/nu^6. This gives the asymptotic bound on nu * seen below as nu ~ 100. For general MACH_EPS it will be * nu > 0.5 / MACH_EPS^(1/6) * When t is small, the bound is even better because |u_N(t)| vanishes * as t->0. In fact u_N(t) ~ C t^N as t->0, with C ~= 0.1. * We write * err_N <= min(0.025, C(1/(1+(x/nu)^2))^3) / nu^6 * therefore * min(0.29/nu^2, 0.5/(nu^2+x^2)) < MACH_EPS^{1/3} * and this is the general form. * * empirical error analysis, assuming 14 digit requirement: * choose x > 50.000 nu ==> nu > 3 * choose x > 10.000 nu ==> nu > 15 * choose x > 2.000 nu ==> nu > 50 * choose x > 1.000 nu ==> nu > 75 * choose x > 0.500 nu ==> nu > 80 * choose x > 0.100 nu ==> nu > 83 * * This makes sense. For x << nu, the error will be of the form u_N(1)/nu^N, * since the polynomial term will be evaluated near t=1, so the bound * on nu will become constant for small x. Furthermore, increasing x with * nu fixed will decrease the error. */intgsl_sf_bessel_Inu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result){ int i; double z = x/nu; double root_term = sqrt(1.0 + z*z); double pre = 1.0/sqrt(2.0*M_PI*nu * root_term); double eta = root_term + log(z/(1.0+root_term)); double ex_arg = ( z < 1.0/GSL_ROOT3_DBL_EPSILON ? nu*(-z + eta) : -0.5*nu/z*(1.0 - 1.0/(12.0*z*z)) ); gsl_sf_result ex_result; int stat_ex = gsl_sf_exp_e(ex_arg, &ex_result); if(stat_ex == GSL_SUCCESS) { double t = 1.0/root_term; double sum; double tpow[16]; tpow[0] = 1.0; for(i=1; i<16; i++) tpow[i] = t * tpow[i-1]; sum = 1.0 + debye_u1(tpow)/nu + debye_u2(tpow)/(nu*nu) + debye_u3(tpow)/(nu*nu*nu) + debye_u4(tpow)/(nu*nu*nu*nu) + debye_u5(tpow)/(nu*nu*nu*nu*nu); result->val = pre * ex_result.val * sum; result->err = pre * ex_result.val / (nu*nu*nu*nu*nu*nu); result->err += pre * ex_result.err * fabs(sum); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = 0.0; result->err = 0.0; return stat_ex; }}/* nu -> Inf; uniform in x > 0 [Abramowitz+Stegun, 9.7.8] * * error: * identical to that above for Inu_scaled */intgsl_sf_bessel_Knu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result){ int i; double z = x/nu; double root_term = sqrt(1.0 + z*z); double pre = sqrt(M_PI/(2.0*nu*root_term)); double eta = root_term + log(z/(1.0+root_term)); double ex_arg = ( z < 1.0/GSL_ROOT3_DBL_EPSILON ? nu*(z - eta) : 0.5*nu/z*(1.0 + 1.0/(12.0*z*z)) ); gsl_sf_result ex_result; int stat_ex = gsl_sf_exp_e(ex_arg, &ex_result); if(stat_ex == GSL_SUCCESS) { double t = 1.0/root_term; double sum; double tpow[16]; tpow[0] = 1.0; for(i=1; i<16; i++) tpow[i] = t * tpow[i-1]; sum = 1.0 - debye_u1(tpow)/nu + debye_u2(tpow)/(nu*nu) - debye_u3(tpow)/(nu*nu*nu) + debye_u4(tpow)/(nu*nu*nu*nu) - debye_u5(tpow)/(nu*nu*nu*nu*nu); result->val = pre * ex_result.val * sum; result->err = pre * ex_result.err * fabs(sum); result->err += pre * ex_result.val / (nu*nu*nu*nu*nu*nu); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = 0.0; result->err = 0.0; return stat_ex; }}/* Evaluate J_mu(x),J_{mu+1}(x) and Y_mu(x),Y_{mu+1}(x) for |mu| < 1/2 */intgsl_sf_bessel_JY_mu_restricted(const double mu, const double x, gsl_sf_result * Jmu, gsl_sf_result * Jmup1, gsl_sf_result * Ymu, gsl_sf_result * Ymup1){ /* CHECK_POINTER(Jmu) */ /* CHECK_POINTER(Jmup1) */ /* CHECK_POINTER(Ymu) */ /* CHECK_POINTER(Ymup1) */ if(x < 0.0 || fabs(mu) > 0.5) { Jmu->val = 0.0; Jmu->err = 0.0; Jmup1->val = 0.0; Jmup1->err = 0.0; Ymu->val = 0.0; Ymu->err = 0.0; Ymup1->val = 0.0; Ymup1->err = 0.0; GSL_ERROR ("error", GSL_EDOM); } else if(x == 0.0) { if(mu == 0.0) { Jmu->val = 1.0; Jmu->err = 0.0; } else { Jmu->val = 0.0; Jmu->err = 0.0; } Jmup1->val = 0.0; Jmup1->err = 0.0; Ymu->val = 0.0; Ymu->err = 0.0; Ymup1->val = 0.0; Ymup1->err = 0.0; GSL_ERROR ("error", GSL_EDOM); } else { int stat_Y; int stat_J; if(x < 2.0) { /* Use Taylor series for J and the Temme series for Y. * The Taylor series for J requires nu > 0, so we shift * up one and use the recursion relation to get Jmu, in * case mu < 0. */ gsl_sf_result Jmup2; int stat_J1 = gsl_sf_bessel_IJ_taylor_e(mu+1.0, x, -1, 100, GSL_DBL_EPSILON, Jmup1); int stat_J2 = gsl_sf_bessel_IJ_taylor_e(mu+2.0, x, -1, 100, GSL_DBL_EPSILON, &Jmup2); double c = 2.0*(mu+1.0)/x; Jmu->val = c * Jmup1->val - Jmup2.val; Jmu->err = c * Jmup1->err + Jmup2.err; Jmu->err += 2.0 * GSL_DBL_EPSILON * fabs(Jmu->val); stat_J = GSL_ERROR_SELECT_2(stat_J1, stat_J2); stat_Y = gsl_sf_bessel_Y_temme(mu, x, Ymu, Ymup1); return GSL_ERROR_SELECT_2(stat_J, stat_Y); } else if(x < 1000.0) { double P, Q; double J_ratio; double J_sgn; const int stat_CF1 = gsl_sf_bessel_J_CF1(mu, x, &J_ratio, &J_sgn); const int stat_CF2 = gsl_sf_bessel_JY_steed_CF2(mu, x, &P, &Q); double Jprime_J_ratio = mu/x - J_ratio; double gamma = (P - Jprime_J_ratio)/Q; Jmu->val = J_sgn * sqrt(2.0/(M_PI*x) / (Q + gamma*(P-Jprime_J_ratio))); Jmu->err = 4.0 * GSL_DBL_EPSILON * fabs(Jmu->val); Jmup1->val = J_ratio * Jmu->val; Jmup1->err = fabs(J_ratio) * Jmu->err; Ymu->val = gamma * Jmu->val; Ymu->err = fabs(gamma) * Jmu->err; Ymup1->val = Ymu->val * (mu/x - P - Q/gamma); Ymup1->err = Ymu->err * fabs(mu/x - P - Q/gamma) + 4.0*GSL_DBL_EPSILON*fabs(Ymup1->val); return GSL_ERROR_SELECT_2(stat_CF1, stat_CF2); } else { /* Use asymptotics for large argument. */ const int stat_J0 = gsl_sf_bessel_Jnu_asympx_e(mu, x, Jmu); const int stat_J1 = gsl_sf_bessel_Jnu_asympx_e(mu+1.0, x, Jmup1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -