⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bessel_jnu.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/bessel_Jnu.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_bessel.h"#include "error.h"#include "bessel.h"#include "bessel_olver.h"#include "bessel_temme.h"/* Evaluate at large enough nu to apply asymptotic * results and apply backward recurrence. */#if 0staticintbessel_J_recur_asymp(const double nu, const double x,                     gsl_sf_result * Jnu, gsl_sf_result * Jnup1){  const double nu_cut = 25.0;  int n;  int steps = ceil(nu_cut - nu) + 1;  gsl_sf_result r_Jnp1;  gsl_sf_result r_Jn;  int stat_O1 = gsl_sf_bessel_Jnu_asymp_Olver_e(nu + steps + 1.0, x, &r_Jnp1);  int stat_O2 = gsl_sf_bessel_Jnu_asymp_Olver_e(nu + steps,       x, &r_Jn);  double r_fe = fabs(r_Jnp1.err/r_Jnp1.val) + fabs(r_Jn.err/r_Jn.val);  double Jnp1 = r_Jnp1.val;  double Jn   = r_Jn.val;  double Jnm1;  double Jnp1_save;  for(n=steps; n>0; n--) {    Jnm1 = 2.0*(nu+n)/x * Jn - Jnp1;    Jnp1 = Jn;    Jnp1_save = Jn;    Jn   = Jnm1;  }  Jnu->val = Jn;  Jnu->err = (r_fe + GSL_DBL_EPSILON * (steps + 1.0)) * fabs(Jn);  Jnup1->val = Jnp1_save;  Jnup1->err = (r_fe + GSL_DBL_EPSILON * (steps + 1.0)) * fabs(Jnp1_save);  return GSL_ERROR_SELECT_2(stat_O1, stat_O2);}#endif/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/intgsl_sf_bessel_Jnu_e(const double nu, const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x < 0.0 || nu < 0.0) {    DOMAIN_ERROR(result);  }  else if(x == 0.0) {    if(nu == 0.0) {      result->val = 1.0;      result->err = 0.0;    }    else {      result->val = 0.0;      result->err = 0.0;    }    return GSL_SUCCESS;  }  else if(x*x < 10.0*(nu+1.0)) {    return gsl_sf_bessel_IJ_taylor_e(nu, x, -1, 100, GSL_DBL_EPSILON, result);  }  else if(nu > 50.0) {    return gsl_sf_bessel_Jnu_asymp_Olver_e(nu, x, result);  }  else {    /* -1/2 <= mu <= 1/2 */    int N = (int)(nu + 0.5);    double mu = nu - N;    /* Determine the J ratio at nu.     */    double Jnup1_Jnu;    double sgn_Jnu;    const int stat_CF1 = gsl_sf_bessel_J_CF1(nu, x, &Jnup1_Jnu, &sgn_Jnu);    if(x < 2.0) {      /* Determine Y_mu, Y_mup1 directly and recurse forward to nu.       * Then use the CF1 information to solve for J_nu and J_nup1.       */      gsl_sf_result Y_mu, Y_mup1;      const int stat_mu = gsl_sf_bessel_Y_temme(mu, x, &Y_mu, &Y_mup1);            double Ynm1 = Y_mu.val;      double Yn   = Y_mup1.val;      double Ynp1 = 0.0;      int n;      for(n=1; n<N; n++) {        Ynp1 = 2.0*(mu+n)/x * Yn - Ynm1;	Ynm1 = Yn;	Yn   = Ynp1;      }      result->val = 2.0/(M_PI*x) / (Jnup1_Jnu*Yn - Ynp1);      result->err = GSL_DBL_EPSILON * (N + 2.0) * fabs(result->val);      return GSL_ERROR_SELECT_2(stat_mu, stat_CF1);    }    else {      /* Recurse backward from nu to mu, determining the J ratio       * at mu. Use this together with a Steed method CF2 to       * determine the actual J_mu, and thus obtain the normalization.       */      double Jmu;      double Jmup1_Jmu;      double sgn_Jmu;      double Jmuprime_Jmu;      double P, Q;      const int stat_CF2 = gsl_sf_bessel_JY_steed_CF2(mu, x, &P, &Q);      double gamma;       double Jnp1 = sgn_Jnu * GSL_SQRT_DBL_MIN * Jnup1_Jnu;      double Jn   = sgn_Jnu * GSL_SQRT_DBL_MIN;      double Jnm1;      int n;      for(n=N; n>0; n--) {        Jnm1 = 2.0*(mu+n)/x * Jn - Jnp1;        Jnp1 = Jn;        Jn   = Jnm1;      }      Jmup1_Jmu = Jnp1/Jn;      sgn_Jmu   = GSL_SIGN(Jn);      Jmuprime_Jmu = mu/x - Jmup1_Jmu;      gamma = (P - Jmuprime_Jmu)/Q;      Jmu   = sgn_Jmu * sqrt(2.0/(M_PI*x) / (Q + gamma*(P-Jmuprime_Jmu)));      result->val = Jmu * (sgn_Jnu * GSL_SQRT_DBL_MIN) / Jn;      result->err = 2.0 * GSL_DBL_EPSILON * (N + 2.0) * fabs(result->val);      return GSL_ERROR_SELECT_2(stat_CF2, stat_CF1);    }  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_bessel_Jnu(const double nu, const double x){  EVAL_RESULT(gsl_sf_bessel_Jnu_e(nu, x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -