📄 legendre_con.c
字号:
double im_tmp = im_multiplier*re_term + re_multiplier*im_term; double asum = fabs(re_sum) + fabs(im_sum); re_term = y/k * re_tmp; im_term = y/k * im_tmp; if(fabs(re_term/asum) < GSL_DBL_EPSILON && fabs(im_term/asum) < GSL_DBL_EPSILON) break; re_sum += re_term; im_sum += im_term; } *reF = re_sum; *imF = im_sum; if(k == kmax) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS;}/* P^{mu}_{-1/2 + I tau} * x->Inf */intgsl_sf_conicalP_large_x_e(const double mu, const double tau, const double x, gsl_sf_result * result, double * ln_multiplier){ /* 2F1 term */ double y = ( x < 0.5*GSL_SQRT_DBL_MAX ? 1.0/(x*x) : 0.0 ); double reF, imF; int stat_F = conicalP_hyperg_large_x(mu, tau, y, &reF, &imF); /* f = Gamma(+i tau)/Gamma(1/2 - mu + i tau) * FIXME: shift so it's better for tau-> 0 */ gsl_sf_result lgr_num, lgth_num; gsl_sf_result lgr_den, lgth_den; int stat_gn = gsl_sf_lngamma_complex_e(0.0,tau,&lgr_num,&lgth_num); int stat_gd = gsl_sf_lngamma_complex_e(0.5-mu,tau,&lgr_den,&lgth_den); double angle = lgth_num.val - lgth_den.val + atan2(imF,reF); double lnx = log(x); double lnxp1 = log(x+1.0); double lnxm1 = log(x-1.0); double lnpre_const = 0.5*M_LN2 - 0.5*M_LNPI; double lnpre_comm = (mu-0.5)*lnx - 0.5*mu*(lnxp1 + lnxm1); double lnpre_err = GSL_DBL_EPSILON * (0.5*M_LN2 + 0.5*M_LNPI) + GSL_DBL_EPSILON * fabs((mu-0.5)*lnx) + GSL_DBL_EPSILON * fabs(0.5*mu)*(fabs(lnxp1)+fabs(lnxm1)); /* result = pre*|F|*|f| * cos(angle - tau * (log(x)+M_LN2)) */ gsl_sf_result cos_result; int stat_cos = gsl_sf_cos_e(angle + tau*(log(x) + M_LN2), &cos_result); int status = GSL_ERROR_SELECT_4(stat_cos, stat_gd, stat_gn, stat_F); if(cos_result.val == 0.0) { result->val = 0.0; result->err = 0.0; return status; } else { double lnFf_val = 0.5*log(reF*reF+imF*imF) + lgr_num.val - lgr_den.val; double lnFf_err = lgr_num.err + lgr_den.err + GSL_DBL_EPSILON * fabs(lnFf_val); double lnnoc_val = lnpre_const + lnpre_comm + lnFf_val; double lnnoc_err = lnpre_err + lnFf_err + GSL_DBL_EPSILON * fabs(lnnoc_val); int stat_e = gsl_sf_exp_mult_err_e(lnnoc_val, lnnoc_err, cos_result.val, cos_result.err, result); if(stat_e == GSL_SUCCESS) { *ln_multiplier = 0.0; } else { result->val = cos_result.val; result->err = cos_result.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *ln_multiplier = lnnoc_val; } return status; }}/* P^{mu}_{-1/2 + I tau} first hypergeometric representation * -1 < x < 1 * This is more effective for |x| small, however it will work w/o * reservation for any x < 0 because everything is positive * definite in that case. * * [Kolbig, (3)] (note typo in args of gamma functions) * [Bateman, (22)] (correct form) */staticintconicalP_xlt1_hyperg_A(double mu, double tau, double x, gsl_sf_result * result){ double x2 = x*x; double err_amp = 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-fabs(x))); double pre_val = M_SQRTPI / pow(0.5*sqrt(1-x2), mu); double pre_err = err_amp * GSL_DBL_EPSILON * (fabs(mu)+1.0) * fabs(pre_val) ; gsl_sf_result ln_g1, ln_g2, arg_g1, arg_g2; gsl_sf_result F1, F2; gsl_sf_result pre1, pre2; double t1_val, t1_err; double t2_val, t2_err; int stat_F1 = gsl_sf_hyperg_2F1_conj_e(0.25 - 0.5*mu, 0.5*tau, 0.5, x2, &F1); int stat_F2 = gsl_sf_hyperg_2F1_conj_e(0.75 - 0.5*mu, 0.5*tau, 1.5, x2, &F2); int status = GSL_ERROR_SELECT_2(stat_F1, stat_F2); gsl_sf_lngamma_complex_e(0.75 - 0.5*mu, -0.5*tau, &ln_g1, &arg_g1); gsl_sf_lngamma_complex_e(0.25 - 0.5*mu, -0.5*tau, &ln_g2, &arg_g2); gsl_sf_exp_err_e(-2.0*ln_g1.val, 2.0*ln_g1.err, &pre1); gsl_sf_exp_err_e(-2.0*ln_g2.val, 2.0*ln_g2.err, &pre2); pre2.val *= -2.0*x; pre2.err *= 2.0*fabs(x); pre2.err += GSL_DBL_EPSILON * fabs(pre2.val); t1_val = pre1.val * F1.val; t1_err = fabs(pre1.val) * F1.err + pre1.err * fabs(F1.val); t2_val = pre2.val * F2.val; t2_err = fabs(pre2.val) * F2.err + pre2.err * fabs(F2.val); result->val = pre_val * (t1_val + t2_val); result->err = pre_val * (t1_err + t2_err); result->err += pre_err * fabs(t1_val + t2_val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return status;}/* P^{mu}_{-1/2 + I tau} * defining hypergeometric representation * [Abramowitz+Stegun, 8.1.2] * 1 < x < 3 * effective for x near 1 * */#if 0staticintconicalP_def_hyperg(double mu, double tau, double x, double * result){ double F; int stat_F = gsl_sf_hyperg_2F1_conj_renorm_e(0.5, tau, 1.0-mu, 0.5*(1.0-x), &F); *result = pow((x+1.0)/(x-1.0), 0.5*mu) * F; return stat_F;}#endif /* 0 *//* P^{mu}_{-1/2 + I tau} second hypergeometric representation * [Zhurina+Karmazina, (3.1)] * -1 < x < 3 * effective for x near 1 * */#if 0staticintconicalP_xnear1_hyperg_C(double mu, double tau, double x, double * result){ double ln_pre, arg_pre; double ln_g1, arg_g1; double ln_g2, arg_g2; double F; int stat_F = gsl_sf_hyperg_2F1_conj_renorm_e(0.5+mu, tau, 1.0+mu, 0.5*(1.0-x), &F); gsl_sf_lngamma_complex_e(0.5+mu, tau, &ln_g1, &arg_g1); gsl_sf_lngamma_complex_e(0.5-mu, tau, &ln_g2, &arg_g2); ln_pre = mu*M_LN2 - 0.5*mu*log(fabs(x*x-1.0)) + ln_g1 - ln_g2; arg_pre = arg_g1 - arg_g2; *result = exp(ln_pre) * F; return stat_F;}#endif /* 0 *//* V0, V1 from Kolbig, m = 0 */staticintconicalP_0_V(const double t, const double f, const double tau, const double sgn, double * V0, double * V1){ double C[8]; double T[8]; double H[8]; double V[12]; int i; T[0] = 1.0; H[0] = 1.0; V[0] = 1.0; for(i=1; i<=7; i++) { T[i] = T[i-1] * t; H[i] = H[i-1] * (t*f); } for(i=1; i<=11; i++) { V[i] = V[i-1] * tau; } C[0] = 1.0; C[1] = (H[1]-1.0)/(8.0*T[1]); C[2] = (9.0*H[2] + 6.0*H[1] - 15.0 - sgn*8.0*T[2])/(128.0*T[2]); C[3] = 5.0*(15.0*H[3] + 27.0*H[2] + 21.0*H[1] - 63.0 - sgn*T[2]*(16.0*H[1]+24.0))/(1024.0*T[3]); C[4] = 7.0*(525.0*H[4] + 1500.0*H[3] + 2430.0*H[2] + 1980.0*H[1] - 6435.0 + 192.0*T[4] - sgn*T[2]*(720.0*H[2]+1600.0*H[1]+2160.0) ) / (32768.0*T[4]); C[5] = 21.0*(2835.0*H[5] + 11025.0*H[4] + 24750.0*H[3] + 38610.0*H[2] + 32175.0*H[1] - 109395.0 + T[4]*(1984.0*H[1]+4032.0) - sgn*T[2]*(4800.0*H[3]+15120.0*H[2]+26400.0*H[1]+34320.0) ) / (262144.0*T[5]); C[6] = 11.0*(218295.0*H[6] + 1071630.0*H[5] + 3009825.0*H[4] + 6142500.0*H[3] + 9398025.0*H[2] + 7936110.0*H[1] - 27776385.0 + T[4]*(254016.0*H[2]+749952.0*H[1]+1100736.0) - sgn*T[2]*(441000.0*H[4] + 1814400.0*H[3] + 4127760.0*H[2] + 6552000.0*H[1] + 8353800.0 + 31232.0*T[4] ) ) / (4194304.0*T[6]); *V0 = C[0] + (-4.0*C[3]/T[1]+C[4])/V[4] + (-192.0*C[5]/T[3]+144.0*C[6]/T[2])/V[8] + sgn * (-C[2]/V[2] + (-24.0*C[4]/T[2]+12.0*C[5]/T[1]-C[6])/V[6] + (-1920.0*C[6]/T[4])/V[10] ); *V1 = C[1]/V[1] + (8.0*(C[3]/T[2]-C[4]/T[1])+C[5])/V[5] + (384.0*C[5]/T[4] - 768.0*C[6]/T[3])/V[9] + sgn * ((2.0*C[2]/T[1]-C[3])/V[3] + (48.0*C[4]/T[3]-72.0*C[5]/T[2] + 18.0*C[6]/T[1])/V[7] + (3840.0*C[6]/T[5])/V[11] ); return GSL_SUCCESS;}/* V0, V1 from Kolbig, m = 1 */staticintconicalP_1_V(const double t, const double f, const double tau, const double sgn, double * V0, double * V1){ double Cm1; double C[8]; double T[8]; double H[8]; double V[12]; int i; T[0] = 1.0; H[0] = 1.0; V[0] = 1.0; for(i=1; i<=7; i++) { T[i] = T[i-1] * t; H[i] = H[i-1] * (t*f); } for(i=1; i<=11; i++) { V[i] = V[i-1] * tau; } Cm1 = -1.0; C[0] = 3.0*(1.0-H[1])/(8.0*T[1]); C[1] = (-15.0*H[2]+6.0*H[1]+9.0+sgn*8.0*T[2])/(128.0*T[2]); C[2] = 3.0*(-35.0*H[3] - 15.0*H[2] + 15.0*H[1] + 35.0 + sgn*T[2]*(32.0*H[1]+8.0))/(1024.0*T[3]); C[3] = (-4725.0*H[4] - 6300.0*H[3] - 3150.0*H[2] + 3780.0*H[1] + 10395.0 -1216.0*T[4] + sgn*T[2]*(6000.0*H[2]+5760.0*H[1]+1680.0)) / (32768.0*T[4]); C[4] = 7.0*(-10395.0*H[5] - 23625.0*H[4] - 28350.0*H[3] - 14850.0*H[2] +19305.0*H[1] + 57915.0 - T[4]*(6336.0*H[1]+6080.0) + sgn*T[2]*(16800.0*H[3] + 30000.0*H[2] + 25920.0*H[1] + 7920.0) ) / (262144.0*T[5]); C[5] = (-2837835.0*H[6] - 9168390.0*H[5] - 16372125.0*H[4] - 18918900*H[3] -10135125.0*H[2] + 13783770.0*H[1] + 43648605.0 -T[4]*(3044160.0*H[2] + 5588352.0*H[1] + 4213440.0) +sgn*T[2]*(5556600.0*H[4] + 14817600.0*H[3] + 20790000.0*H[2] + 17297280.0*H[1] + 5405400.0 + 323072.0*T[4] ) ) / (4194304.0*T[6]); C[6] = 0.0; *V0 = C[0] + (-4.0*C[3]/T[1]+C[4])/V[4] + (-192.0*C[5]/T[3]+144.0*C[6]/T[2])/V[8] + sgn * (-C[2]/V[2] + (-24.0*C[4]/T[2]+12.0*C[5]/T[1]-C[6])/V[6] ); *V1 = C[1]/V[1] + (8.0*(C[3]/T[2]-C[4]/T[1])+C[5])/V[5] + (384.0*C[5]/T[4] - 768.0*C[6]/T[3])/V[9] + sgn * (Cm1*V[1] + (2.0*C[2]/T[1]-C[3])/V[3] + (48.0*C[4]/T[3]-72.0*C[5]/T[2] + 18.0*C[6]/T[1])/V[7] ); return GSL_SUCCESS;}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*//* P^0_{-1/2 + I lambda} */intgsl_sf_conicalP_0_e(const double lambda, const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(x == 1.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(lambda == 0.0) { gsl_sf_result K; int stat_K; if(x < 1.0) { const double th = acos(x); const double s = sin(0.5*th); stat_K = gsl_sf_ellint_Kcomp_e(s, GSL_MODE_DEFAULT, &K); result->val = 2.0/M_PI * K.val; result->err = 2.0/M_PI * K.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_K; } else { const double xi = acosh(x); const double c = cosh(0.5*xi); const double t = tanh(0.5*xi); stat_K = gsl_sf_ellint_Kcomp_e(t, GSL_MODE_DEFAULT, &K); result->val = 2.0/M_PI / c * K.val; result->err = 2.0/M_PI / c * K.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_K; } } else if( (x <= 0.0 && lambda < 1000.0) || (x < 0.1 && lambda < 17.0) || (x < 0.2 && lambda < 5.0 ) ) { return conicalP_xlt1_hyperg_A(0.0, lambda, x, result); } else if( (x <= 0.2 && lambda < 17.0) || (x <= 1.5 && lambda < 20.0) ) { return gsl_sf_hyperg_2F1_conj_e(0.5, lambda, 1.0, (1.0-x)/2, result); } else if(1.5 < x && lambda < GSL_MAX(x,20.0)) { gsl_sf_result P; double lm; int stat_P = gsl_sf_conicalP_large_x_e(0.0, lambda, x, &P, &lm ); int stat_e = gsl_sf_exp_mult_err_e(lm, 2.0*GSL_DBL_EPSILON * fabs(lm), P.val, P.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_P); } else { double V0, V1; if(x < 1.0) { double th = acos(x); double sth = sqrt(1.0-x*x); /* sin(th) */ gsl_sf_result I0, I1; int stat_I0 = gsl_sf_bessel_I0_scaled_e(th * lambda, &I0); int stat_I1 = gsl_sf_bessel_I1_scaled_e(th * lambda, &I1); int stat_I = GSL_ERROR_SELECT_2(stat_I0, stat_I1); int stat_V = conicalP_0_V(th, x/sth, lambda, -1.0, &V0, &V1); double bessterm = V0 * I0.val + V1 * I1.val; double besserr = fabs(V0) * I0.err + fabs(V1) * I1.err; double arg1 = th*lambda; double sqts = sqrt(th/sth); int stat_e = gsl_sf_exp_mult_err_e(arg1, 4.0 * GSL_DBL_EPSILON * fabs(arg1), sqts * bessterm, sqts * besserr, result); return GSL_ERROR_SELECT_3(stat_e, stat_V, stat_I); } else { double sh = sqrt(x-1.0)*sqrt(x+1.0); /* sinh(xi) */ double xi = log(x + sh); /* xi = acosh(x) */ gsl_sf_result J0, J1; int stat_J0 = gsl_sf_bessel_J0_e(xi * lambda, &J0); int stat_J1 = gsl_sf_bessel_J1_e(xi * lambda, &J1); int stat_J = GSL_ERROR_SELECT_2(stat_J0, stat_J1); int stat_V = conicalP_0_V(xi, x/sh, lambda, 1.0, &V0, &V1); double bessterm = V0 * J0.val + V1 * J1.val; double besserr = fabs(V0) * J0.err + fabs(V1) * J1.err; double pre_val = sqrt(xi/sh); double pre_err = 2.0 * fabs(pre_val); result->val = pre_val * bessterm; result->err = pre_val * besserr; result->err += pre_err * fabs(bessterm); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_V, stat_J); } }}/* P^1_{-1/2 + I lambda} */intgsl_sf_conicalP_1_e(const double lambda, const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(lambda == 0.0) { gsl_sf_result K, E; int stat_K, stat_E; if(x == 1.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < 1.0) { if(1.0-x < GSL_SQRT_DBL_EPSILON) { double err_amp = GSL_MAX_DBL(1.0, 1.0/(GSL_DBL_EPSILON + fabs(1.0-x))); result->val = 0.25/M_SQRT2 * sqrt(1.0-x) * (1.0 + 5.0/16.0 * (1.0-x)); result->err = err_amp * 3.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double th = acos(x); const double s = sin(0.5*th); const double c2 = 1.0 - s*s; const double sth = sin(th); const double pre = 2.0/(M_PI*sth); stat_K = gsl_sf_ellint_Kcomp_e(s, GSL_MODE_DEFAULT, &K); stat_E = gsl_sf_ellint_Ecomp_e(s, GSL_MODE_DEFAULT, &E); result->val = pre * (E.val - c2 * K.val); result->err = pre * (E.err + fabs(c2) * K.err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_K; } } else { if(x-1.0 < GSL_SQRT_DBL_EPSILON) { double err_amp = GSL_MAX_DBL(1.0, 1.0/(GSL_DBL_EPSILON + fabs(1.0-x))); result->val = -0.25/M_SQRT2 * sqrt(x-1.0) * (1.0 - 5.0/16.0 * (x-1.0)); result->err = err_amp * 3.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double xi = acosh(x); const double c = cosh(0.5*xi); const double t = tanh(0.5*xi); const double sxi = sinh(xi); const double pre = 2.0/(M_PI*sxi) * c; stat_K = gsl_sf_ellint_Kcomp_e(t, GSL_MODE_DEFAULT, &K); stat_E = gsl_sf_ellint_Ecomp_e(t, GSL_MODE_DEFAULT, &E);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -