📄 bessel_temme.c
字号:
/* specfunc/bessel_temme.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman *//* Calculate series for Y_nu and K_nu for small x and nu. * This is applicable for x < 2 and |nu|<=1/2. * These functions assume x > 0. */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_mode.h>#include "bessel_temme.h"#include "chebyshev.h"#include "cheb_eval.c"/* nu = (x+1)/4, -1<x<1, 1/(2nu)(1/Gamma[1-nu]-1/Gamma[1+nu]) */static double g1_dat[14] = { -1.14516408366268311786898152867, 0.00636085311347084238122955495, 0.00186245193007206848934643657, 0.000152833085873453507081227824, 0.000017017464011802038795324732, -6.4597502923347254354668326451e-07, -5.1819848432519380894104312968e-08, 4.5189092894858183051123180797e-10, 3.2433227371020873043666259180e-11, 6.8309434024947522875432400828e-13, 2.8353502755172101513119628130e-14, -7.9883905769323592875638087541e-16, -3.3726677300771949833341213457e-17, -3.6586334809210520744054437104e-20};static cheb_series g1_cs = { g1_dat, 13, -1, 1, 7};/* nu = (x+1)/4, -1<x<1, 1/2 (1/Gamma[1-nu]+1/Gamma[1+nu]) */static double g2_dat[15] = { 1.882645524949671835019616975350, -0.077490658396167518329547945212, -0.018256714847324929419579340950, 0.0006338030209074895795923971731, 0.0000762290543508729021194461175, -9.5501647561720443519853993526e-07, -8.8927268107886351912431512955e-08, -1.9521334772319613740511880132e-09, -9.4003052735885162111769579771e-11, 4.6875133849532393179290879101e-12, 2.2658535746925759582447545145e-13, -1.1725509698488015111878735251e-15, -7.0441338200245222530843155877e-17, -2.4377878310107693650659740228e-18, -7.5225243218253901727164675011e-20};static cheb_series g2_cs = { g2_dat, 14, -1, 1, 8};staticintgsl_sf_temme_gamma(const double nu, double * g_1pnu, double * g_1mnu, double * g1, double * g2){ const double anu = fabs(nu); /* functions are even */ const double x = 4.0*anu - 1.0; gsl_sf_result r_g1; gsl_sf_result r_g2; cheb_eval_e(&g1_cs, x, &r_g1); cheb_eval_e(&g2_cs, x, &r_g2); *g1 = r_g1.val; *g2 = r_g2.val; *g_1mnu = 1.0/(r_g2.val + nu * r_g1.val); *g_1pnu = 1.0/(r_g2.val - nu * r_g1.val); return GSL_SUCCESS;}intgsl_sf_bessel_Y_temme(const double nu, const double x, gsl_sf_result * Ynu, gsl_sf_result * Ynup1){ const int max_iter = 15000; const double half_x = 0.5 * x; const double ln_half_x = log(half_x); const double half_x_nu = exp(nu*ln_half_x); const double pi_nu = M_PI * nu; const double alpha = pi_nu / 2.0; const double sigma = -nu * ln_half_x; const double sinrat = (fabs(pi_nu) < GSL_DBL_EPSILON ? 1.0 : pi_nu/sin(pi_nu)); const double sinhrat = (fabs(sigma) < GSL_DBL_EPSILON ? 1.0 : sinh(sigma)/sigma); const double sinhalf = (fabs(alpha) < GSL_DBL_EPSILON ? 1.0 : sin(alpha)/alpha); const double sin_sqr = nu*M_PI*M_PI*0.5 * sinhalf*sinhalf; double sum0, sum1; double fk, pk, qk, hk, ck; int k = 0; int stat_iter; double g_1pnu, g_1mnu, g1, g2; int stat_g = gsl_sf_temme_gamma(nu, &g_1pnu, &g_1mnu, &g1, &g2); fk = 2.0/M_PI * sinrat * (cosh(sigma)*g1 - sinhrat*ln_half_x*g2); pk = 1.0/M_PI /half_x_nu * g_1pnu; qk = 1.0/M_PI *half_x_nu * g_1mnu; hk = pk; ck = 1.0; sum0 = fk + sin_sqr * qk; sum1 = pk; while(k < max_iter) { double del0; double del1; double gk; k++; fk = (k*fk + pk + qk)/(k*k-nu*nu); ck *= -half_x*half_x/k; pk /= (k - nu); qk /= (k + nu); gk = fk + sin_sqr * qk; hk = -k*gk + pk; del0 = ck * gk; del1 = ck * hk; sum0 += del0; sum1 += del1; if(fabs(del0) < 0.5*(1.0 + fabs(sum0))*GSL_DBL_EPSILON) break; } Ynu->val = -sum0; Ynu->err = (2.0 + 0.5*k) * GSL_DBL_EPSILON * fabs(Ynu->val); Ynup1->val = -sum1 * 2.0/x; Ynup1->err = (2.0 + 0.5*k) * GSL_DBL_EPSILON * fabs(Ynup1->val); stat_iter = ( k >= max_iter ? GSL_EMAXITER : GSL_SUCCESS ); return GSL_ERROR_SELECT_2(stat_iter, stat_g);}intgsl_sf_bessel_K_scaled_temme(const double nu, const double x, double * K_nu, double * K_nup1, double * Kp_nu){ const int max_iter = 15000; const double half_x = 0.5 * x; const double ln_half_x = log(half_x); const double half_x_nu = exp(nu*ln_half_x); const double pi_nu = M_PI * nu; const double sigma = -nu * ln_half_x; const double sinrat = (fabs(pi_nu) < GSL_DBL_EPSILON ? 1.0 : pi_nu/sin(pi_nu)); const double sinhrat = (fabs(sigma) < GSL_DBL_EPSILON ? 1.0 : sinh(sigma)/sigma); const double ex = exp(x); double sum0, sum1; double fk, pk, qk, hk, ck; int k = 0; int stat_iter; double g_1pnu, g_1mnu, g1, g2; int stat_g = gsl_sf_temme_gamma(nu, &g_1pnu, &g_1mnu, &g1, &g2); fk = sinrat * (cosh(sigma)*g1 - sinhrat*ln_half_x*g2); pk = 0.5/half_x_nu * g_1pnu; qk = 0.5*half_x_nu * g_1mnu; hk = pk; ck = 1.0; sum0 = fk; sum1 = hk; while(k < max_iter) { double del0; double del1; k++; fk = (k*fk + pk + qk)/(k*k-nu*nu); ck *= half_x*half_x/k; pk /= (k - nu); qk /= (k + nu); hk = -k*fk + pk; del0 = ck * fk; del1 = ck * hk; sum0 += del0; sum1 += del1; if(fabs(del0) < 0.5*fabs(sum0)*GSL_DBL_EPSILON) break; } *K_nu = sum0 * ex; *K_nup1 = sum1 * 2.0/x * ex; *Kp_nu = - *K_nup1 + nu/x * *K_nu; stat_iter = ( k == max_iter ? GSL_EMAXITER : GSL_SUCCESS ); return GSL_ERROR_SELECT_2(stat_iter, stat_g);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -