📄 hyperg_1f1.c
字号:
double pair_ratio; double rat_0 = fabs(r_Mnm1.err/r_Mnm1.val); double rat_1 = fabs(r_Mn.err/r_Mn.val); for(n=eps+1.0; n<a-0.1; n++) { Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n; Mnm1 = Mn; Mn = Mnp1; minim_pair = GSL_MIN_DBL(fabs(Mn) + fabs(Mnm1), minim_pair); } pair_ratio = start_pair/minim_pair; result->val = Mn; result->err = 2.0 * (rat_0 + rat_1 + GSL_DBL_EPSILON) * (fabs(a)+1.0) * fabs(Mn); result->err += 2.0 * (rat_0 + rat_1) * pair_ratio*pair_ratio * fabs(Mn); result->err += 2.0 * GSL_DBL_EPSILON * fabs(Mn); return GSL_ERROR_SELECT_2(stat_0, stat_1); } } else { /* x < 0 * b < a */ if(a <= 0.5*(b-x) || a >= -x) { /* Recurse down in b, from near the a=b line, b=a+eps,a+eps-1. */ double N = floor(a - b); double eps = 1.0 + N - a + b; gsl_sf_result r_Manp1; gsl_sf_result r_Man; int stat_0 = hyperg_1F1_beps_bgt0(-eps, a+eps, x, &r_Manp1); int stat_1 = hyperg_1F1_beps_bgt0(1.0-eps, a+eps-1.0, x, &r_Man); double Manp1 = r_Manp1.val; double Man = r_Man.val; double Manm1; double n; double start_pair = fabs(Manp1) + fabs(Man); double minim_pair = GSL_DBL_MAX; double pair_ratio; double rat_0 = fabs(r_Manp1.err/r_Manp1.val); double rat_1 = fabs(r_Man.err/r_Man.val); for(n=a+eps-1.0; n>b+0.1; n -= 1.0) { Manm1 = (-n*(1-n-x)*Man - x*(n-a)*Manp1)/(n*(n-1.0)); Manp1 = Man; Man = Manm1; minim_pair = GSL_MIN_DBL(fabs(Manp1) + fabs(Man), minim_pair); } /* FIXME: this is a nasty little hack; there is some (transient?) instability in this recurrence for some values. I can tell when it happens, which is when this pair_ratio is large. But I do not know how to measure the error in terms of it. I guessed quadratic below, but it is probably worse than that. */ pair_ratio = start_pair/minim_pair; result->val = Man; result->err = 2.0 * (rat_0 + rat_1 + GSL_DBL_EPSILON) * (fabs(b-a)+1.0) * fabs(Man); result->err *= pair_ratio*pair_ratio + 1.0; return GSL_ERROR_SELECT_2(stat_0, stat_1); } else { /* Pick a0 such that b ~= 2a0 + x, then * recurse down in b from a0,a0 to determine * the values near the line b=2a+x. Then recurse * forward on a from a0. */ double epsa = a - floor(a); double a0 = floor(0.5*(b-x)) + epsa; double N = floor(a0 - b); double epsb = 1.0 + N - a0 + b; double Ma0b; double Ma0bp1; double Ma0p1b; int stat_a0; double Mnm1; double Mn; double Mnp1; double n; double err_rat; { gsl_sf_result r_Ma0np1; gsl_sf_result r_Ma0n; int stat_0 = hyperg_1F1_beps_bgt0(-epsb, a0+epsb, x, &r_Ma0np1); int stat_1 = hyperg_1F1_beps_bgt0(1.0-epsb, a0+epsb-1.0, x, &r_Ma0n); double Ma0np1 = r_Ma0np1.val; double Ma0n = r_Ma0n.val; double Ma0nm1; err_rat = fabs(r_Ma0np1.err/r_Ma0np1.val) + fabs(r_Ma0n.err/r_Ma0n.val); for(n=a0+epsb-1.0; n>b+0.1; n -= 1.0) { Ma0nm1 = (-n*(1-n-x)*Ma0n - x*(n-a0)*Ma0np1)/(n*(n-1.0)); Ma0np1 = Ma0n; Ma0n = Ma0nm1; } Ma0bp1 = Ma0np1; Ma0b = Ma0n; Ma0p1b = (b*(a0+x)*Ma0b+x*(a0-b)*Ma0bp1)/(a0*b); /* right-down hook */ stat_a0 = GSL_ERROR_SELECT_2(stat_0, stat_1); } /* Initialise the recurrence correctly BJG */ if (a0 >= a - 0.1) { Mn = Ma0b; } else if (a0 + 1>= a - 0.1) { Mn = Ma0p1b; } else { Mnm1 = Ma0b; Mn = Ma0p1b; for(n=a0+1.0; n<a-0.1; n += 1.0) { Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n; Mnm1 = Mn; Mn = Mnp1; } } result->val = Mn; result->err = (err_rat + GSL_DBL_EPSILON) * (fabs(b-a)+1.0) * fabs(Mn); return stat_a0; } }}/* Assumes b != integer * Assumes a != integer when x > 0 * Assumes b-a != neg integer when x < 0 */staticinthyperg_1F1_ab_neg(const double a, const double b, const double x, gsl_sf_result * result){ const double bma = b - a; const double abs_x = fabs(x); const double abs_a = fabs(a); const double abs_b = fabs(b); const double size_a = GSL_MAX(abs_a, 1.0); const double size_b = GSL_MAX(abs_b, 1.0); const int bma_integer = ( bma - floor(bma+0.5) < _1F1_INT_THRESHOLD ); if( (abs_a < 10.0 && abs_b < 10.0 && abs_x < 5.0) || (b > 0.8*GSL_MAX(fabs(a),1.0)*fabs(x)) ) { return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } else if( x > 0.0 && size_b > size_a && size_a*log(M_E*x/size_b) < GSL_LOG_DBL_EPSILON+7.0 ) { /* Series terms are positive definite up until * there is a sign change. But by then the * terms are small due to the last condition. */ return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } else if( (abs_x < 5.0 && fabs(bma) < 10.0 && abs_b < 10.0) || (b > 0.8*GSL_MAX_DBL(fabs(bma),1.0)*abs_x) ) { /* Use Kummer transformation to render series safe. */ gsl_sf_result Kummer_1F1; int stat_K = gsl_sf_hyperg_1F1_series_e(bma, b, -x, &Kummer_1F1); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else if( x < -30.0 && GSL_MAX_DBL(fabs(a),1.0)*GSL_MAX_DBL(fabs(1.0+a-b),1.0) < 0.99*fabs(x) ) { /* Large negative x asymptotic. * Note that we do not check if b-a is a negative integer. */ return hyperg_1F1_asymp_negx(a, b, x, result); } else if( x > 100.0 && GSL_MAX_DBL(fabs(bma),1.0)*GSL_MAX_DBL(fabs(1.0-a),1.0) < 0.99*fabs(x) ) { /* Large positive x asymptotic. * Note that we do not check if a is a negative integer. */ return hyperg_1F1_asymp_posx(a, b, x, result); } else if(x > 0.0 && !(bma_integer && bma > 0.0)) { return hyperg_1F1_U(a, b, x, result); } else { /* FIXME: if all else fails, try the series... BJG */ if (x < 0.0) { /* Apply Kummer Transformation */ int status = gsl_sf_hyperg_1F1_series_e(b-a, b, -x, result); double K_factor = exp(x); result->val *= K_factor; result->err *= K_factor; return status; } else { int status = gsl_sf_hyperg_1F1_series_e(a, b, x, result); return status; } /* Sadness... */ /* result->val = 0.0; */ /* result->err = 0.0; */ /* GSL_ERROR ("error", GSL_EUNIMPL); */ }}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/intgsl_sf_hyperg_1F1_int_e(const int a, const int b, const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(a == b) { return gsl_sf_exp_e(x, result); } else if(b == 0) { DOMAIN_ERROR(result); } else if(a == 0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(b < 0 && (a < b || a > 0)) { /* Standard domain error due to singularity. */ DOMAIN_ERROR(result); } else if(x > 100.0 && GSL_MAX_DBL(1.0,fabs(b-a))*GSL_MAX_DBL(1.0,fabs(1-a)) < 0.5 * x) { /* x -> +Inf asymptotic */ return hyperg_1F1_asymp_posx(a, b, x, result); } else if(x < -100.0 && GSL_MAX_DBL(1.0,fabs(a))*GSL_MAX_DBL(1.0,fabs(1+a-b)) < 0.5 * fabs(x)) { /* x -> -Inf asymptotic */ return hyperg_1F1_asymp_negx(a, b, x, result); } else if(a < 0 && b < 0) { return hyperg_1F1_ab_negint(a, b, x, result); } else if(a < 0 && b > 0) { /* Use Kummer to reduce it to the positive integer case. * Note that b > a, strictly, since we already trapped b = a. */ gsl_sf_result Kummer_1F1; int stat_K = hyperg_1F1_ab_posint(b-a, b, -x, &Kummer_1F1); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else { /* a > 0 and b > 0 */ return hyperg_1F1_ab_posint(a, b, x, result); }}intgsl_sf_hyperg_1F1_e(const double a, const double b, const double x, gsl_sf_result * result ){ const double bma = b - a; const double rinta = floor(a + 0.5); const double rintb = floor(b + 0.5); const double rintbma = floor(bma + 0.5); const int a_integer = ( fabs(a-rinta) < _1F1_INT_THRESHOLD && rinta > INT_MIN && rinta < INT_MAX ); const int b_integer = ( fabs(b-rintb) < _1F1_INT_THRESHOLD && rintb > INT_MIN && rintb < INT_MAX ); const int bma_integer = ( fabs(bma-rintbma) < _1F1_INT_THRESHOLD && rintbma > INT_MIN && rintbma < INT_MAX ); const int b_neg_integer = ( b < -0.1 && b_integer ); const int a_neg_integer = ( a < -0.1 && a_integer ); const int bma_neg_integer = ( bma < -0.1 && bma_integer ); /* CHECK_POINTER(result) */ if(x == 0.0) { /* Testing for this before testing a and b * is somewhat arbitrary. The result is that * we have 1F1(a,0,0) = 1. */ result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(b == 0.0) { DOMAIN_ERROR(result); } else if(a == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(a == b) { /* case: a==b; exp(x) * It's good to test exact equality now. * We also test approximate equality later. */ return gsl_sf_exp_e(x, result); } else if(fabs(b) < _1F1_INT_THRESHOLD) { /* Note that neither a nor b is zero, since * we eliminated that with the above tests. */ if(fabs(a) < _1F1_INT_THRESHOLD) { /* a and b near zero: 1 + a/b (exp(x)-1) */ gsl_sf_result exm1; int stat_e = gsl_sf_expm1_e(x, &exm1); double sa = ( a > 0.0 ? 1.0 : -1.0 ); double sb = ( b > 0.0 ? 1.0 : -1.0 ); double lnab = log(fabs(a/b)); /* safe */ gsl_sf_result hx; int stat_hx = gsl_sf_exp_mult_err_e(lnab, GSL_DBL_EPSILON * fabs(lnab), sa * sb * exm1.val, exm1.err, &hx); result->val = (hx.val == GSL_DBL_MAX ? hx.val : 1.0 + hx.val); /* FIXME: excessive paranoia ? what is DBL_MAX+1 ?*/ result->err = hx.err; return GSL_ERROR_SELECT_2(stat_hx, stat_e); } else { /* b near zero and a not near zero */ const double m_arg = 1.0/(0.5*b); gsl_sf_result F_renorm; int stat_F = hyperg_1F1_renorm_b0(a, x, &F_renorm); int stat_m = gsl_sf_multiply_err_e(m_arg, 2.0 * GSL_DBL_EPSILON * m_arg, 0.5*F_renorm.val, 0.5*F_renorm.err, result); return GSL_ERROR_SELECT_2(stat_m, stat_F); } } else if(a_integer && b_integer) { /* Check for reduction to the integer case. * Relies on the arbitrary "near an integer" test. */ return gsl_sf_hyperg_1F1_int_e((int)rinta, (int)rintb, x, result); } else if(b_neg_integer && !(a_neg_integer && a > b)) { /* Standard domain error due to * uncancelled singularity. */ DOMAIN_ERROR(result); } else if(a_neg_integer) { return hyperg_1F1_a_negint_lag((int)rinta, b, x, result); } else if(b > 0.0) { if(-1.0 <= a && a <= 1.0) { /* Handle small a explicitly. */ return hyperg_1F1_small_a_bgt0(a, b, x, result); } else if(bma_neg_integer) { /* Catch this now, to avoid problems in the * generic evaluation code. */ gsl_sf_result Kummer_1F1; int stat_K = hyperg_1F1_a_negint_lag((int)rintbma, b, -x, &Kummer_1F1); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else if(a < 0.0) { /* Use Kummer to reduce it to the generic positive case. * Note that b > a, strictly, since we already trapped b = a. * Also b-(b-a)=a, and a is not a negative integer here, * so the generic evaluation is safe. */ gsl_sf_result Kummer_1F1; int stat_K = hyperg_1F1_ab_pos(b-a, b, -x, &Kummer_1F1); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else { /* a > 0.0 */ return hyperg_1F1_ab_pos(a, b, x, result); } } else { /* b < 0.0 */ if(bma_neg_integer && x < 0.0) { /* Handle this now to prevent problems * in the generic evaluation. */ gsl_sf_result K; int stat_K; int stat_e; if(a < 0.0) { /* Kummer transformed version of safe polynomial. * The condition a < 0 is equivalent to b < b-a, * which is the condition required for the series * to be positive definite here. */ stat_K = hyperg_1F1_a_negint_poly((int)rintbma, b, -x, &K); } else { /* Generic eval for negative integer a. */ stat_K = hyperg_1F1_a_negint_lag((int)rintbma, b, -x, &K); } stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), K.val, K.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else if(a > 0.0) { /* Use Kummer to reduce it to the generic negative case. */ gsl_sf_result K; int stat_K = hyperg_1F1_ab_neg(b-a, b, -x, &K); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), K.val, K.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else { return hyperg_1F1_ab_neg(a, b, x, result); } }} #if 0 /* Luke in the canonical case. */ if(x < 0.0 && !a_neg_integer && !bma_neg_integer) { double prec; return hyperg_1F1_luke(a, b, x, result, &prec); } /* Luke with Kummer transformation. */ if(x > 0.0 && !a_neg_integer && !bma_neg_integer) { double prec; double Kummer_1F1; double ex; int stat_F = hyperg_1F1_luke(b-a, b, -x, &Kummer_1F1, &prec); int stat_e = gsl_sf_exp_e(x, &ex); if(stat_F == GSL_SUCCESS && stat_e == GSL_SUCCESS) { double lnr = log(fabs(Kummer_1F1)) + x; if(lnr < GSL_LOG_DBL_MAX) { *result = ex * Kummer_1F1; return GSL_SUCCESS; } else { *result = GSL_POSINF; GSL_ERROR ("overflow", GSL_EOVRFLW); } } else if(stat_F != GSL_SUCCESS) { *result = 0.0; return stat_F; } else { *result = 0.0; return stat_e; } }#endif/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_hyperg_1F1_int(const int m, const int n, double x){ EVAL_RESULT(gsl_sf_hyperg_1F1_int_e(m, n, x, &result));}double gsl_sf_hyperg_1F1(double a, double b, double x){ EVAL_RESULT(gsl_sf_hyperg_1F1_e(a, b, x, &result));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -