⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 beta_inc.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/beta_inc.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sf_log.h>#include <gsl/gsl_sf_exp.h>#include "gsl_sf_gamma.h"#include "error.h"#include "check.h"staticintbeta_cont_frac(  const double a,  const double b,  const double x,  gsl_sf_result * result  ){  const unsigned int max_iter = 512;        /* control iterations      */  const double cutoff = 2.0 * GSL_DBL_MIN;  /* control the zero cutoff */  unsigned int iter_count = 0;  double cf;  /* standard initialization for continued fraction */  double num_term = 1.0;  double den_term = 1.0 - (a+b)*x/(a+1.0);  if (fabs(den_term) < cutoff) den_term = cutoff;  den_term = 1.0/den_term;  cf = den_term;  while(iter_count < max_iter) {    const int k  = iter_count + 1;    double coeff = k*(b-k)*x/(((a-1.0)+2*k)*(a+2*k));    double delta_frac;    /* first step */    den_term = 1.0 + coeff*den_term;    num_term = 1.0 + coeff/num_term;    if(fabs(den_term) < cutoff) den_term = cutoff;    if(fabs(num_term) < cutoff) num_term = cutoff;    den_term  = 1.0/den_term;    delta_frac = den_term * num_term;    cf *= delta_frac;    coeff = -(a+k)*(a+b+k)*x/((a+2*k)*(a+2*k+1.0));    /* second step */    den_term = 1.0 + coeff*den_term;    num_term = 1.0 + coeff/num_term;    if(fabs(den_term) < cutoff) den_term = cutoff;    if(fabs(num_term) < cutoff) num_term = cutoff;    den_term = 1.0/den_term;    delta_frac = den_term*num_term;    cf *= delta_frac;    if(fabs(delta_frac-1.0) < 2.0*GSL_DBL_EPSILON) break;    ++iter_count;  }  result->val = cf;  result->err = iter_count * 4.0 * GSL_DBL_EPSILON * fabs(cf);  if(iter_count >= max_iter)    GSL_ERROR ("error", GSL_EMAXITER);  else    return GSL_SUCCESS;}/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/intgsl_sf_beta_inc_e(  const double a,  const double b,  const double x,  gsl_sf_result * result  ){  if(a <= 0.0 || b <= 0.0 || x < 0.0 || x > 1.0) {    DOMAIN_ERROR(result);  }  else if(x == 0.0) {    result->val = 0.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else if(x == 1.0) {    result->val = 1.0;    result->err = 0.0;    return GSL_SUCCESS;  }  else {    gsl_sf_result ln_beta;    gsl_sf_result ln_x;    gsl_sf_result ln_1mx;    gsl_sf_result prefactor;    const int stat_ln_beta = gsl_sf_lnbeta_e(a, b, &ln_beta);    const int stat_ln_1mx = gsl_sf_log_1plusx_e(-x, &ln_1mx);    const int stat_ln_x = gsl_sf_log_e(x, &ln_x);    const int stat_ln = GSL_ERROR_SELECT_3(stat_ln_beta, stat_ln_1mx, stat_ln_x);    const double ln_pre_val = -ln_beta.val + a * ln_x.val + b * ln_1mx.val;    const double ln_pre_err =  ln_beta.err + fabs(a*ln_x.err) + fabs(b*ln_1mx.err);    const int stat_exp = gsl_sf_exp_err_e(ln_pre_val, ln_pre_err, &prefactor);    if(stat_ln != GSL_SUCCESS) {      result->val = 0.0;      result->err = 0.0;      GSL_ERROR ("error", GSL_ESANITY);    }    if(x < (a + 1.0)/(a+b+2.0)) {      /* Apply continued fraction directly. */      gsl_sf_result cf;      const int stat_cf = beta_cont_frac(a, b, x, &cf);      int stat;      result->val = prefactor.val * cf.val / a;      result->err = (fabs(prefactor.err * cf.val) + fabs(prefactor.val * cf.err))/a;      stat = GSL_ERROR_SELECT_2(stat_exp, stat_cf);      if(stat == GSL_SUCCESS) {	CHECK_UNDERFLOW(result);      }      return stat;    }    else {      /* Apply continued fraction after hypergeometric transformation. */      gsl_sf_result cf;      const int stat_cf = beta_cont_frac(b, a, 1.0-x, &cf);      int stat;      const double term = prefactor.val * cf.val / b;      result->val  = 1.0 - term;      result->err  = fabs(prefactor.err * cf.val)/b;      result->err += fabs(prefactor.val * cf.err)/b;      result->err += 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(term));      stat = GSL_ERROR_SELECT_2(stat_exp, stat_cf);      if(stat == GSL_SUCCESS) {	CHECK_UNDERFLOW(result);      }      return stat;    }  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_beta_inc(const double a, const double b, const double x){  EVAL_RESULT(gsl_sf_beta_inc_e(a, b, x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -