⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bessel_k0.c

📁 开放gsl矩阵运算
💻 C
字号:
/* specfunc/bessel_K0.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include "gsl_sf_exp.h"#include "gsl_sf_bessel.h"#include "error.h"#include "chebyshev.h"#include "cheb_eval.c"/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*//* based on SLATEC bk0(), bk0e() *//* chebyshev expansions  series for bk0        on the interval  0.	    to  4.00000d+00					with weighted error   3.57e-19					 log weighted error  18.45			       significant figures required  17.99				    decimal places required  18.97 series for ak0        on the interval  1.25000d-01 to  5.00000d-01					with weighted error   5.34e-17					 log weighted error  16.27			       significant figures required  14.92				    decimal places required  16.89 series for ak02       on the interval  0.	    to  1.25000d-01					with weighted error   2.34e-17					 log weighted error  16.63			       significant figures required  14.67				    decimal places required  17.20*/static double bk0_data[11] = {  -0.03532739323390276872,   0.3442898999246284869,    0.03597993651536150163,   0.00126461541144692592,   0.00002286212103119451,   0.00000025347910790261,   0.00000000190451637722,   0.00000000001034969525,   0.00000000000004259816,   0.00000000000000013744,   0.00000000000000000035};static cheb_series bk0_cs = {  bk0_data,  10,  -1, 1,  10};static double ak0_data[17] = {  -0.07643947903327941,  -0.02235652605699819,   0.00077341811546938,  -0.00004281006688886,   0.00000308170017386,  -0.00000026393672220,   0.00000002563713036,  -0.00000000274270554,   0.00000000031694296,  -0.00000000003902353,   0.00000000000506804,  -0.00000000000068895,   0.00000000000009744,  -0.00000000000001427,   0.00000000000000215,  -0.00000000000000033,   0.00000000000000005};static cheb_series ak0_cs = {  ak0_data,  16,  -1, 1,  10};static double ak02_data[14] = {  -0.01201869826307592,  -0.00917485269102569,   0.00014445509317750,  -0.00000401361417543,   0.00000015678318108,  -0.00000000777011043,   0.00000000046111825,  -0.00000000003158592,   0.00000000000243501,  -0.00000000000020743,   0.00000000000001925,  -0.00000000000000192,   0.00000000000000020,  -0.00000000000000002};static cheb_series ak02_cs = {  ak02_data,  13,  -1, 1,  8};/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_bessel_K0_scaled_e(const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= 0.0) {    DOMAIN_ERROR(result);  }  else if(x <= 2.0) {    const double lx = log(x);    const double ex = exp(x);    int stat_I0;    gsl_sf_result I0;    gsl_sf_result c;    cheb_eval_e(&bk0_cs, 0.5*x*x-1.0, &c);    stat_I0 = gsl_sf_bessel_I0_e(x, &I0);    result->val  = ex * ((-lx+M_LN2)*I0.val - 0.25 + c.val);    result->err  = ex * ((M_LN2+fabs(lx))*I0.err + c.err);    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return stat_I0;  }  else if(x <= 8.0) {    const double sx = sqrt(x);    gsl_sf_result c;    cheb_eval_e(&ak0_cs, (16.0/x-5.0)/3.0, &c);    result->val  = (1.25 + c.val) / sx;    result->err  = c.err / sx;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    const double sx = sqrt(x);    gsl_sf_result c;    cheb_eval_e(&ak02_cs, 16.0/x-1.0, &c);    result->val  = (1.25 + c.val) / sx;    result->err  = (c.err + GSL_DBL_EPSILON) / sx;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  } }int gsl_sf_bessel_K0_e(const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= 0.0) {    DOMAIN_ERROR(result);  }  else if(x <= 2.0) {    const double lx = log(x);    int stat_I0;    gsl_sf_result I0;    gsl_sf_result c;    cheb_eval_e(&bk0_cs, 0.5*x*x-1.0, &c);    stat_I0 = gsl_sf_bessel_I0_e(x, &I0);    result->val  = (-lx+M_LN2)*I0.val - 0.25 + c.val;    result->err  = (fabs(lx) + M_LN2) * I0.err + c.err;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return stat_I0;  }  else {    gsl_sf_result K0_scaled;    int stat_K0 = gsl_sf_bessel_K0_scaled_e(x, &K0_scaled);    int stat_e  = gsl_sf_exp_mult_err_e(-x, GSL_DBL_EPSILON*fabs(x),                                           K0_scaled.val, K0_scaled.err,					   result);    return GSL_ERROR_SELECT_2(stat_e, stat_K0);  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_bessel_K0_scaled(const double x){  EVAL_RESULT(gsl_sf_bessel_K0_scaled_e(x, &result));}double gsl_sf_bessel_K0(const double x){  EVAL_RESULT(gsl_sf_bessel_K0_e(x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -